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In many traditional machine learning methods, sampling is only a process of acquiring
training data. However, some studies (on sequential Markov chains and particle filters)
have demonstrated that sampling can be used for solving some intractable optimization
problems in classical learning methods. Along this line of thinking, the relationships
between sampling and learning are theoretically exploited in this paper, wherein the key
feature of the sampling process is selecting representative samples from original data that
can be modeled by a probability distribution. In theory, acquiring reliable samples is not an
easy task for an arbitrary probability distribution. Motivated by approaches in evolutionary
computation, rejection sampling and function approximation, a novel sampling strategy,
called the evolutionary sampling, is proposed in this paper, and a machine learning
method, called the evolutionary sampling approach (ESA), is put forward afterwards.
Within ESA, a computing model, called the support sample model (SSM), is presented as
well and is used to approximate an original density function. Accordingly, a concrete
implementation of an evolutionary sampling approach (ESA) is proposed to seek the opti-
mal model parameters of the SSM. Benefiting from the combination of rejection sampling
and evolutionary searching, the ESA can theoretically converge to the optimal solution by
minimizing the total variation distance, and can do this with high computational efficiency.
Moreover, the normalized factor of a density function can be automatically estimated with
high precision within the ESA. As a result, the ESA may be suitable for machine learning
problems that could be transformed into density function approximation problems within
a probabilistic framework. In addition, derived from the rejection sampling strategy, the
ESA can also have online learning abilities required by large-scale data stream processing
tasks. Theoretical analyses and application studies are carried out in this paper, and the
results demonstrate that the ESA, as a novel way of machine learning, has several promi-
nent merits aspired by past researches in machine learning.
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1. Introduction

In modern information processing, sampling is an important approach for acquiring discrete data from original signals. By
using computers, these discrete data can be more efficiently recorded, stored, transmitted, analyzed and visualized than their
original forms. Therefore, sampling may be useful in solving those machine learning problems whose solutions could be rep-
resented by a group of samples [26,31]. More specifically, if a machine learning problem could be solved within a probabi-
listic framework, effective sampling strategies are needed to obtain representative samples (patterns). For example, fuzzy
rules obtained by learning neuro-fuzzy systems from data can be related to representative samples of the practical problem
that is being modeled. Similarly, support vectors in support vector machines (SVM) can also be viewed as pivotal sample
vectors of the original dataset, and neural nodes in a neural network can also be related to typical representatives of all avail-
able samples. In addition, a group of particles (samples) are used to reliably represent a solution’s state configuration in par-
ticle filter methods [14,9,40,49].

The above analysis convinced us that, if a solution could be represented by a group of particular samples, the solving (or
learning) process of the corresponding problem could also be fulfilled by the sampling process. This new idea lays the foun-
dation of probing novel machine learning methods within a probabilistic framework in this paper. To unify the concept, we
introduce a new term, called the ‘‘support sample set’’, to describe the sample set that represents a solution of the problem,
such that the problem can be solved by acquiring an optimal support sample set.

Although the support sample set (SSS) should be integrally treated in representing a solution, the procedure of acquiring
the optimal support sample set could be implemented by adjusting individual support samples iteratively. This strategy is
very similar to evolutionary computation algorithms, especially particle swarm optimization, which evolve the candidate
solutions until the optimum is found. We expect that this idea borrowed from evolutionary computation could prove valu-
able in improving the learning performance when seeking the optimal support sample set. Motivated by the above thinking,
we propose a new sampling procedure, called the evolutionary sampling, which is the core of our contributions in this paper.
Accordingly, the learning procedure based on evolutionary sampling is called the evolutionary sampling approach (ESA) and
is proposed in this paper.

The ESA, which can naturally be considered the combination of sampling approximation (rejection sampling strategies)
and evolutionary optimization, will inherit their excellent characteristics. In theory, the ESA is a novel development of rejec-
tion sampling and extends its application to the field of machine learning. It also extends the application scope of evolution-
ary optimization. While ESA is a sampling method with the strategy of evolutionary algorithms incorporated into sampling
approximation, estimation of distribution algorithms (EDAs) and EDA-like evolutionary algorithms (such as compact differ-
ential evolution, compact particle swarm optimization, disturbed exploitation compact differential evolution and memetic
compact differential evolution are modern stochastic optimization methods exploring the space of potential solutions by
building and sampling explicit probabilistic models of promising candidate solutions [20,29,33–35]. Although both ESA
and EDA-like optimization algorithms appear to be combinations of sampling method and evolutionary algorithm, their pur-
poses are completely different. ESA is a novel sampling method but EDA-like algorithms are optimization techniques.

In brief, the purpose of the evolutionary sampling proposed in this paper is to obtain an optimal approximation of any
pointwise computable density function by using finite samples, which is a fundamental problem in statistics and statistical
machine learning area. Mainly, our novel ESA algorithm combines the rejection sampling with other strategies in order to
address the above goal within the probabilistic framework. Consequently, the ESA can be suitable for almost all the machine
learning problems that can be solved within a probabilistic framework. Additionally, some important machine learning
problems can be described as (or could be converted into corresponding) density function approximation problem problems,
such as the estimation of the density distribution of the characteristic data or the joint distribution between input data and
output data. Thus, the evolutionary sampling approach may work well for many machine learning problems. Since the pro-
posed ESA is a general sampling optimization strategy, specific algorithms based on ESA and aiming for different practical
applications should be analyzed.

The remainder of the paper is structured as follows. In Section 2, background knowledge and some important discussions
are given. Section 3 presents the detailed implementation and the characteristics of the evolutionary sampling approach
together with some important theoretical results. In Section 4, the experimental analyses on the ESA are performed. In
Section 5, several ESA-based machine learning algorithms are proposed and some theoretical and experimental studies
are performed on them. Finally, all important contributions of our studies are concluded in Section 6.
2. Background

2.1. Sampling and problem solving

Although sampling, as an important data processing method, has been widespread used in statistics, it became even more
important when the computing science was born. By means of specific sampling methods, Von Neumann and others success-
fully performed complicated computing and simulations of the motion of physical particles in nuclear physics in the middle
of the last century. The Monte Carlo integration [26] was the core of most problems, which computed an estimate of the
following integral:
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I ¼
Z

D
gðxÞpðxÞdx;
where p(x) was a probability density function, g(x) was a function and D was the region of integration. In general, it is very
difficult to directly calculate the accurate value of I by analytical methods. However, according to the law of large numbers,
Von Neumann et al. proved that the value of I could be estimated using the following formula:
I � 1
N

XN

i¼1

gðxiÞ;
where X = {xi; i = 1,2, . . . ,N} was a sample set generated from p(x). Thus, how to obtain a good sample set from p(x) becomes
the most important problem in the above computing problem. Besides, as a special form of sampling from some standard
probability density functions (uniform distribution, normal distribution, etc.), the random number generating approach also
plays a fundamental role in many modern computing and simulating problems, such as in evolutionary computation
[44,7,16], particle filtering [49], and condensed sampling [4].

2.2. Basic sampling methods

There are three types of practical sampling methods. The first one is represented by the standard pseudo-random number
generating methods. Two examples of this type are the multiply-with-carry (MWC) method proposed by George Marsaglia
to generate pseudo-random numbers of a uniform distribution on [0, 1], and the normal random number generator to gen-
erate pseudo-random numbers of a standard normal distribution [11,36,28]. The second one is the inverse transform sam-
pling method [11], which can perform sampling effectively by using the uniform random number generator on [0, 1] when
the corresponding probability density function has an explicit inverse expression. The third one is the rejection sampling
method, firstly introduced by von Neumann [50]. Among the three sampling methods, the first two types of sampling strat-
egies have excellent sampling efficiency but poor applicability. Compared to the third method, they need less sampling time
to acquire sufficient valid samples, but do not fit for most sampling requirements. The first type of sampling methods is only
suitable for a few standard probability density functions. The second type of sampling methods, which have relatively wider
applicative scopes than the first type, cannot be widely used though, since most probability density functions have no expli-
cit inverse expressions. In contrast, rejection sampling methods are more general since they can fit almost all sampling
demands in theory [26]. Many types of rejection sampling strategies have been proposed, including classical rejection sam-
pling [50], Monte-Carlo Markov Chain [31], and many later variants [22,13,30,5,42]. Although existing rejection sampling
strategies have been widely used in many sampling requirements, how to improve their sampling efficiency is still an open
problem, where sampling efficiency can be evaluated by the accepted ratio, which is defined as the ratio (probability) of the
number of accepted valid samples to that of generated candidates. On the contrary, the candidate samples generated by the
other two types of sampling methods are all valid samples so that their accepted ratios equal to 1. That is, they produce many
repetitive samples in the sample set using current rejection sampling strategies. In practice, we only need some valid sam-
ples, and thus many repetitive samples are not desirable.

Except for some specific sampling methods used in applied statistics (economic statistics, population and social statistics,
etc.), the existing sampling methods fall into the aforementioned three types, which are widely used in statistics and
machine learning. The first two types, namely the standard pseudo-random number generating methods and the inverse
transform methods, are not our main focus in this study and will not be further discussed in this paper. Among all rejection
sampling methods, the Metropolis-Hasting (MH) rejection sampling procedure is an important and representative method,
which has a better real efficiency than the pioneer method proposed by von Neumann, and can be outlined as follows [26].
Metropolis-hasting rejection sampling
1
 Given current state x(t)
2
 Draw y from the proposal distribution T(x(t), y)

Draw U = Uniform[0, 1] and update�
3

xðtþ1Þ ¼ y; if U 6 rðxðtÞ; yÞ

xðtÞ otherwise
where rðx; yÞ ¼min 1; pðyÞTðy;xÞpðxÞTðx;yÞ

n o
as suggested by Metropolis et al. and Hastings [26], and Uniform[0, 1] is the generator for

random numbers uniformly distributed on [0, 1].
With the iterative execution of the MH rejection sampling, for any given initial x(0), the probability of generating x(t)

approximates p(x) and the corresponding Markov chain tends to converge. Thus, k samples x(i),i = [n + 1, . . . , n + k] can be
obtained from p(x), where n is the least iteration number needed to reach its stable distribution of x(t).

Apart from the MH sampling, many other rejection sampling strategies in machine learning have also been put forward,
such as the weighted re-sampling method [17,2,12], the block sampling method [13], the backward revised sampling
method [30], the variational Monte Carlo method [18,6], wherein the weighted re-sampling method is most widely used.
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3. The evolutionary sampling learning

Based on the preliminary discussions on the evolutionary sampling strategy in the previous sections, this section provides
a complete exploration on the relevant aspects. A novel machine learning method based on evolutionary sampling, named as
the evolutionary sampling approach (ESA), is proposed and discussed. The ESA is used to acquire the optimal model param-
eters of the support sample model related to an expected probability density distribution. Here, the model parameters of the
support sample model mainly refer to its support samples. The section begins with the description of the definition of the
support sample model (SSM).
3.1. The Support Sample Model (SSM)

As pointed out in the above discussion, some additional explanations imposed on a support sample set can lead to a new
computing model, i.e. the support sample model, which can be used to approximate (or substitute) any original probability
density distribution. In fact, many current computing models also have their own additional computing rules on their core
parts. For example, in many kernel density estimation methods, it is assumed that the probability density of the data can be
estimated by computing a weighted combination of a group of Gaussian density functions. The combination operator and the
Gaussian density function are essentially the additional explanations on the original data. Similarly, the same situations can
be found in neural networks, fuzzy systems, and support vector machines.

To introduce reasonable computing rules on the support sample set, we are to begin our theoretical analysis starting from
the support samples themselves. When some sample data are gathered to form support samples under an unknown rule,
new relationships among these support samples are also built. It is well-known that the most fundamental strategy for fig-
uring out the relationship between two different objects is to measure their distance. In mathematics, defining a distance
measure is also a precondition for the definition of a space. For a set of support samples, when a distance measure on them
is imported, their relationships also will be naturally created. Moreover, a probability measure on these support samples can
be defined by introducing additional interpretations that reflect the probability of another sample when one sample exists.
In present researches, the most classical interpretation is a Gaussian density distribution, as used in kernel density estima-
tion [54,51]. The Gaussian density distribution presumes that the influencing probability of one sample to another sample
obeys a Gaussian function in a statistical meaning.

Next, we let X and pX(�) represent the feature data of certain object OX and the probability distribution of X respectively,
where the variable range of X is denoted by DX (discrete or continuous space). Likewise, we define pY(�) as the probability
distribution on the feature data of the object OY, and, then, if there exists the relationship between OX and OY, we may define
pX�Y(�) = pX(�) � pY(�) as their joint probability distribution, where � is a connecting operator. Similarly, the definition
pZð�Þ ¼ pX1 ð�Þ � pX2 ð�Þ � � � � pXm ð�Þ also can be given for the case of connecting multiple objects. Thus, we can describe an
object or the relationship to different objects using the probability distribution of its feature data or their feature data. None-
theless, the exact expressions of these probability distributions are unknown in practice. To tackle this problem, we must
introduce computable probability distribution expressions on these objects or their relationships. In the support sample
model, we let MpX(�) and MpY(�) denote computable expressions of describing OX and OY, respectively, using a group of sup-
port samples within the probabilistic framework. Moreover, we consider that MpX(�) has the form MpX(x) = Mh(x) � K(x; h),
where � is a convolution operator, Mh(x) is the probability distribution of the support samples, and K(x; h) is an additional
interpretation with probabilistic form (like a kernel function). In this paper, a Gaussian kernel function is considered for
K(x; h), thus h is the Gaussian kernel parameters. Consequently, we can redefine MpX(�) in the form
MpðxÞ ¼ 1

NS

P
xi2Xs

Kðx; xi; hÞ by means of the Monte Carlo integration formula, where NS is the cardinal number of the support

sample set XS. Reviewing the definition of Mp(x), we can see that the support samples are the core and K(x; h) reflects the
contribution of any support sample to the total model output. This consideration coincides with the common experience of a
human that when recognizing an object is mainly dependent on its representative appearances.
3.2. The evolutionary sampling approach

As introduced in the preceding section, the goal of the evolutionary sampling learning is to acquire an optimal SSM to
approximate another probability distribution. Generally, the above problem can be formalized as the following optimization
problem within a probabilistic framework.
X�S ¼ arg
XS

minfkMpð�Þ 	 pð�ÞkTVg; ð1Þ
where X�S is the optimal combination of all possible support samples, Mp(�) and p(�) represent the probability distributions
related to the SSM and the objective model, respectively, and k�kTV denotes the total variation distance. For the convenience
of the description, we let p(�) and G(x, y, h) substitute Mp(�) and K(x, y; h), respectively, in the following text. As introduced
above, we will introduce a new computing strategy, called the evolutionary sampling approach (ESA), to solve the above
problem.
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Adopting the core idea of the rejection sampling strategy, a similar sampling procedure is designed for each support sam-
ple, thus there are NS concurrent rejection sampling chains in the ESA. For each sampling chain, a candidate sample is firstly
generated and then it is received as the new sample with a certain probability. Generally, we let Ak(x, y) denote the proba-
bility of generating a new sample datum y from x at the kth rejection sampling step, and let ak(x, y) denote the probability of
receiving datum y as the new sample datum if previous sample datum is x at the k th rejection sampling step. So, if the cur-
rent support sample datum is x, then the probability of receiving the sample datum y(y – x) as the new support sample is
Ak(x, y) � ak(x, y) after performing the kth rejection sampling step, which is the same as the traditional rejection sampling
strategy. Thus, the concrete expressions of Ak(x, y) and ak(x, y) should be carefully designed, which will completely deter-
mine the final sampling results. According to our explorations, the following formulas are proposed to solve the problem
in Eq. (1). (
Akðx; yÞ ¼ qkðx; yÞ � aMHðx; yÞ x – yR
qkðx; tÞ � 1	 aMHðx; tÞ½ 
dt x ¼ y

; ð2Þ

akðx; yÞ ¼max 1	 pðxÞ � pkðyÞ
pðyÞ � pkðxÞ ; 0

� �
; ð3Þ
where qk(x, y) is the probability of directly generating a new candidate sample y from x, which hasR
qkðx; tÞdt ¼ 1 qkðx; tÞ > 0 8x; t; k, and satisfies the symmetry, that is qk(x, y) = qk(y, x). For aMH(x, y), the same form as

in the standard Metropolis-Hasting rejection sampling is used, i.e., aMHðx; yÞ ¼min 1; pðyÞpðxÞ

n o
. So, the equation p(x)Ak(-

x, y) = p(y)Ak(y, x) is absolutely satisfied. In practice, qk(x, y) should have the form that can directly generate the candidate
support sample y from x with a probability of qk(x, y), such as the exponential distribution function and the Gaussian distri-
bution function. Different from traditional rejection sampling strategies, ak(x, y) is newly designed to ensure that the stable
solution of pk(x) can approximate p(x). Wherein, according to the definition of p(x) in the SSM, we have
pðxÞ ¼ 1
NS

X
xi2XS

Kðx; xi; hÞ: ð4Þ
Next, combining the above discussions, we can put forward the concrete implementation of the ESA as follows.
The Evolutionary Sampling Approach (ESA)
1
 Select NS initial support samples; let the initial support sample set be X0
S ¼ x0

1; x
0
2; . . . ; x0

NS

n o
, and let k = 0.
2
 For each support sample xk
i in Xk

S , perform step 3 � 6. � �

3
 Generate a candidate support sample datum yi

C according to the searching probability qk xk
i ; y .� �
4

Get a uniform random number R on [0, 1]; if R < min 1;

p yi
Cð Þ

p xk
ið Þ

receive yi
C provisionally, then go to the next step;

otherwise reject it and go to step 6.� �

5
 Calculate the value of ak xk

i ; y
C
i according to Eq. (3), generate another uniform random number R0 on [0, 1], if

R0 < ak xk
i ; y

C
i

� �
receive yi

C successfully, otherwise reject it.

6
 If yi

C is received successfully, let xkþ1
i ¼ yC

i ; otherwise let xkþ1
i ¼ xk

i .n o

7
 Update k = k + 1 and let new support sample set be Xk

S ¼ xk
1; x

k
2; . . . ; xk

NS
.

8
 If the changing difference between two contiguous support sample sets is very small or other termination
conditions are satisfied stop the sampling procedure; otherwise go to step 2.
9
 Output the final support sample set Xk
S and the corresponding pk(x).
10
 END
In the above evolutionary sampling approach, the uniform random number can be generated by standard pseudo-random
number generating methods, such as the linear congruential generator LCG [36,28]. Except for the uniform random gener-
ating methods, the expressions of K(x, y; h) and qk(x, y) should also be precisely defined in the ESA. To answer this problem,
some restrictive conditions for K(x, y; h) and qk(x, y) should be firstly considered as follows. (1) All values are non-negative
and finite. (2) They are finitely integrable. (3) New candidate sample datum y can be directly generated from x according to
qk(x, y). When the above three restrictions for K(x, y; h) and qk(x, y) are satisfied, exact definitions of them are alterable, such
that we can define different forms for different practical applications even for different stages in the same sampling proce-
dure. For example, reasonable K(x, y; h)qk(x, y) could be selected to achieve more exact approximation for certain particular
applications, and specific values could be considered to improve the searching performance of the evolutionary sampling
procedure in other cases. Of course, it must be pointed out that, in theory, the same optimal results can be equally obtained
under different qk(x, y), but the same K(x, y; h). In contrast, different K(x, y; h) will produce different approximation results
to some extent (more discussions will be given in the later text). Combining the above conclusions and our explorations, the
Gaussian kernel function for K(x, y; h) and the symmetrical exponential function for qk(x, y) are proposed as follows.
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Kðx; y; rÞ ¼ 1

ð2pr2Þd=2 exp 	kx	 yk
2r2

� �
; ð5Þ

qkðx; y; bÞ / e	jx	yj=b: ð6Þ
In the expression of K(x, y; r), r is the kernel width, x, y are all d-dimension data, k�k is the vector norm and the 2-norm is
the default setting in this paper. For qk(x, y; b), the idea mainly came from our previous studies on the quantum-behaved
particle swarm optimization QPSO [44,45] and our comparisons, where b is the searching scale factor. Obviously, the scale
factor b can be adaptively adjusted in the sampling procedure, which features the idea of evolutionary searching.

In the ESA, it can be found that the sampling procedure is executed in parallel for each support sample, and the final
updating probability of support sample set will tend to zero. On the contrary, the ultimate average receiving probability
of new candidate samples will converge to a stable nonzero value in traditional rejection sampling methods. Their difference
primarily derives from the different solving objectives. That is, the ESA focuses on acquiring optimal support samples to
approximate very well the original probability distribution, which demands that the learning process produces a fixed solu-
tion. However, since a traditional rejection sampling method generates sample data continuously according to the original
probability distribution, its sampling procedure must last forever. Another difference between the ESA and traditional rejec-
tion sampling methods can also be clearly found in that the two rejection operators (determined by Ak(x, y) and ak(x, y),
respectively) are performed twice for each candidate sample at every sampling iteration in the ESA, while only once is
required in traditional rejection sampling methods. As a result, the real receiving ratio of the new candidate support sample
is decided by the product of the two receiving probabilities.
3.3. Theoretical analysis

As described above, the ESA mainly intends to gain an optimal approximation of the original probability distribution. So,
the convergence and the actual approximation performance must be analyzed as the two most important performance
indexes of the ESA, which will be done in this subsection. Some other properties are also explored, including the computa-
tional complexity, how to improve the practical approximation performance, as well as some theoretical discussions on pos-
sible applications.

Derived from the concepts of evolutional computation and sampling, the ESA can ensure that the obtained support
sample set is probabilistically optimal within limited number of samples and the given SSM. Moreover, the SSM output
can steadily and asymptotically converge (in probability) to the original probability distribution by minimizing the total var-
iation distance between the SSM output and the original probability distribution. Although the performing process of the ESA
is different from current rejection sampling methods, it is similar to those of usual machine learning methods, such as sup-
port regression models [52,3], the coreset model [10], and fuzzy systems [8]. In these approaches, firstly, they all artificially
construct a machine model and then use appropriate learning methods to obtain optimal model parameters. Another fact
that should be emphasized is that, unlike many traditional machine learning methods that need to solve complicated
optimization problems like linear programming and quadratic programming, the ESA is a forward learning process, in a
similar way as classical rejection sampling methods. This characteristic makes the ESA have good computing efficiency
and low computational complexity. On the other hand, the introduction of evolutionary methods from swarm optimization
algorithms will render that the ESA can efficiently achieve the optimal solution.

From the view of evolutionary computation, ESA’s learning behavior possess some common features with estimation of
distribution algorithms (EDAs), like DE/EDA [46], compact differential evolution [29], compact particle swarm optimization
[35], disturbed exploitation compact differential evolution [33], and memetic compact differential evolution [34]. In those
EDA-like methods, the optimization procedure is designed to find the local probability of the optimal solution, in which
few limited variables are employed to represent the local probability and so those algorithms may only need very low mem-
ory usage. Obviously, ESA and EDA-like methods use similar representation strategy to find the probability of the optimal
solution. Furthermore, some evolutionary strategies designed in them on those representation variables may be mutually
borrowed in theory. Nevertheless, since the two types of algorithms are considered to solve different types of problems
as mentioned in the introduction section, they play distinct roles in practical applications.
3.3.1. Convergence analysis on ESA
It is well known that the convergence that will be analyzed here must be ensured for any machine learning algorithms.

For ESA, if pk(�) has a stable solution with the execution of evolutionary sampling, then the algorithm has converged. Accord-
ing to the definition of pk(�), it completely depends on the corresponding support sample set Xk

S under a given kernel density
function K(�, �; h). Further, we can consider Xk

S samples from a distribution hk(�), furthermore, pk(�) could be viewed as an
estimation of hk(�).
pkðxÞ ¼
Z

hkðtÞ � Kðx; t; hÞdt: ð7Þ
For the need of analyzing the convergence of ESA, we firstly introduce the following Theorem 1.
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Theorem 1. Suppose that p(x) is a probability density function, T(x, y) is a transition probability function used in the rejection
sampling, which satisfies the transition invariance to p(x), that is p (x)T(x, y) = p(y)T(y, x). With any given initial probability
density function p0(x), if pkþ1ðxÞ ¼

R
pkðtÞTðt; xÞdt holds, then:
lim
k!1

pkð�Þ 	 pð�Þ
�� ��

TV ¼ 0: ð8Þ
Proof. This could be directly derived according to the convergence analysis of the classical rejection sampling method [26].

Because of particular characteristics of ESA, we firstly analyze the case that NS is inefficiently large and pk(�) may be
viewed as the approximation of hk(�) in arbitrary high precision. Under this consideration, we can deduce the following
Theorem 2. h
Theorem 2. For the ESA, if p(x) is a normalized probabilistic density function, that is
R
pðxÞdx ¼ 1, pk(�) is an approximation of

hk(�) with arbitrary high precision, then with the progress of the evolutionary sampling, the SSM output p1(�) tends to a stable
solution p⁄(�). Equivalently, limk?1 pk(�) = p⁄(�), at the same time p⁄(�) optimally approximates p(�) with the minimal total var-
iation distance between p⁄(�) and p(�).
Proof. According to the condition and the iterative procedure of ESA, the following equation exists for pk+1(�), pk(�) and p(�).
pkþ1ðxÞ ¼
Z

pkðtÞ � Akðt; xÞ � akðt; xÞdt þ pkðxÞ �
Z

Akðx; tÞ � ½1	 akðx; tÞ
dt ð9Þ
If let
pkðxÞ ¼ rkðxÞpðxÞ ð10Þ
then Eq. (9) can be rewritten as
pkþ1ðxÞ ¼ rkþ1ðxÞpðxÞ ¼
Z

rkðtÞpðtÞ � Akðt; xÞ � akðt; xÞdt þ rkðxÞpðxÞ �
Z

Akðx; tÞ � ½1	 akðx; tÞ
dt ð11Þ
Moreover:
rkþ1ðxÞ ¼
Z

rkðtÞ � Akðx; tÞ � akðt; xÞdt þ rkðxÞ �
Z

Akðx; tÞ � ½1	 akðx; tÞ
dt ð12Þ
Combining Eq. (3) into the above equation, we have
rkþ1ðxÞ ¼
Z

rkðtÞ � Akðx; tÞ �max 1	 pðtÞ � pkðxÞ
pðxÞ � pkðtÞ ;0

� �
dt þ rkðxÞ �

Z
Akðx; tÞ

� 1	max 1	 pðxÞ � pkðtÞ
pðtÞ � pkðxÞ ; 0

� �� �
dt ð13Þ
Additionally, akðx; yÞ ¼max 1	 pðxÞ�pkðyÞ
pðyÞ�pkðxÞ ;0

n o
¼ 1	min pðxÞ�pkðyÞ

pðyÞ�pkðxÞ ;1
n o

, and substituting it into Eq. (13), we have:
rkþ1ðxÞ ¼
Z

rkðtÞAkðx; tÞdt 	
Z

Akðx; tÞrkðtÞmin
pðtÞ � pkðxÞ
pðxÞ � pkðtÞ ;1
� �

dt þ
Z

Akðx; tÞrkðxÞmin
pðxÞ � pkðtÞ
pðtÞ � pkðxÞ ;1
� �

dt

¼
Z

rkðtÞAkðx; tÞdt ð14Þ
Equivalently,
pkþ1ðxÞ ¼ pðxÞ
Z

pkðtÞ
pðtÞ Akðx; tÞdt ¼

Z
pkðtÞ
pðtÞ pðtÞA

kðt; xÞdt ¼
Z

pkðtÞAkðt; xÞdt ð15Þ
Thus, the Theorem 2 is proved according to Theorem 1. h

In Theorem 2, we consider that pk(�) is an estimation of hk(�) in high precision. Practically, it may not be ensured where NS

is finite. Nevertheless, we could think that pk(�) still will converges to a stable solution that approximates p(�) (limk?1 pk

(�) � p⁄(�) ? p(�)) according to a qualitative analysis.
In Theorem 2, we suppose that p(x) is a normalized probability density function admitting

R
pðxÞdx ¼ 1. However, the

normalization factor of p(x) usually do not equal to 1, and is very hard to calculate it in most practical applications. For this
case, the following lemma can be deduced.

Lemma 1. If the normalization factor of p(x) is not equivalent to one in the conditions of Theorem 2, then there is limk?1
pk(�) � p⁄(�) ? p (�)/kp, where kp is the normalization factor of p(�), that is

R
pðxÞdx ¼ kp.
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Proof. Let p0(x) = p(x)/kp. In terms of the definitions of Ak(x, y) and ak(x, y), they have the same computational values with
respect to p0(x) and p(x). On the other hand, the final solution of the ESA is only dependent on Ak(x, y) and ak(x, y), therefore
if we replace p(x) with p0(x) in the ESA, an equivalent solution will be produced. That is, the limk?1 pk(�) � p⁄(�) still exists
according to Theorem 2, and p⁄(�) may optimally approximate p0(�)(p0(�)/kp) in the same way. The lemma is now proven. h
3.3.2. Approximation performance of the ESA
For convenience, we firstly analyze the case when the original probability distribution could be exactly approximated (or

equivalently represented) by an SSM with given kernel parameters and NS. In this case, the practical solution acquired by the
ESA might tend to the ideal solution with infinitesimal difference, equivalently pk(x) ? p(x). Accordingly, ak(x, y) ? 0 exists,
which is a very noteworthy conclusion and will help us design the excellent termination condition for the ESA. In terms of
this conclusion, the updating ratio of the support samples at every iteration could be employed for taking the decision of
terminating the sampling process. Obviously, the lower this value the higher the approximation degree.

Nevertheless, the real updating ratio is simultaneously dependent on Ak(x, y) and ak(x, y) in the ESA. So that, if the updat-
ing ratio tends to 0, it cannot consistently reflect ak(x, y) ? 0, but it only indicates that the sampling process tends to con-
verge. As for the evolutionary searching, this discrepancy derives from the difference between the global optimum and the
local optimum. In theory, when a searching algorithm tends to converge, it may converge to a local or global optimum solu-
tion. In practice, it is not easy to assuredly acquire the global optimum solution even if it is reachable given enough time,
because the number of evolutionary iterations must be finite. So, further studies on its practical approximation performance
should be performed for the ESA.

According to Eq. (2), which defines Ak(x, y), the updating probability of the first rejection sampling depends on qk(x, y;b)
and aMH(x, y), simultaneously. Wherein, the computing expression of aMH(x, y) is invariant during the evolutionary sampling
process, and we have aMH(x, y) > 0 for all x, y. Accordingly, if Ak(x, y) ? 0, then we may have qk(x, y; b) ? 0. To make the algo-
rithm reach a valid solution within a finite number of evolutionary iterations, qk(x, y; b) usually tends to 0 by adjusting
b ? 0. In the ESA, b reflects the scalar scope in searching new possible support samples from current support samples. Obvi-
ously, a large b will result in better abilities of finding new support samples, but more slower convergence speed, and vice
versa. Furthermore, the value of b has no influence on the convergence and the approximation performance of the ESA, as
indicated by the theoretical analysis. So, we can adaptively adjust b to achieve different goals in different sampling stages
of the ESA. For example, a larger b might be suitable to keep wide searching scope in the starting stage, while a smaller b
might be needed to fast converge to the fixed solution in the final stage.

According to the above analysis, in the case that p(�) might be exactly approximated by the SSM, the approximation per-
formance is ideal if we could continuously perform the evolutionary sampling endlessly with b > 0. However, a finite number
of sampling iterations must be considered in practice, so we should consider how to obtain better practical approximation
performance. That is, how to better decide the sampling termination. Considering the above analysis, the following strategy
could be designed. When a local stable solution has been reached, we may increase b to find more possible support samples.
Thus, if a sufficient big value of b is used and new support samples still cannot be found, then the sampling learning might be
ultimately terminated. This strategy will ensure the ESA can acquire good practical approximation performance.

Along the above discussion, we will examine the practical approximation performance on another case when p(�) cannot
be exactly expressed by the SSM. For these cases, the following lemma could be concluded directly from Theorem 2.

Lemma 2. Suppose that p⁄(�) is the stable solution of the ESA with given p(�), which is a normalized probability density function.
Then the following equations exist:
a�ðxi; yÞ ¼ 0 8xi 2 Xs;8y;pðyÞ > e ð16Þ
p� �jX�s
� �

¼min
Xs
kpð�jXsÞ 	 pð�ÞkTV ð17Þ
where e is extremely small value, where all y with p(y) < e may considered to be not reached in probability under the final evolu-
tionary searching of ESA. According to Lemma 2, the following theorem could be further deduced.
Theorem 3. If X�s denotes the stable support sample set achieved by the ESA, and p⁄(�) is the stable solution, then for any x, we
have:
k�p�ðxÞ ¼ pðxÞ; x 2 Xs ð18Þ

or
k�p�ðxÞP pðxÞ; x R Xs;pðxÞ > e ð19Þ

where k⁄ is a constant scalar.
Proof. At first, according to Eq. (16), we have
a�ðx; yÞ ¼ max 1	 pðxÞ � p�ðyÞ
pðyÞ � p�ðxÞ ; 0

� �
¼ 0 8x 2 Xs;8y;pðyÞ > e ð20Þ
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and equivalently,
p�ðxÞ
pðxÞ 6

p�ðyÞ
pðyÞ 8x 2 Xs;8y;pðyÞ > e ð21Þ
According to lemma 2, we have the following equation:
p�ðxÞ
pðxÞ ¼

p�ðyÞ
pðyÞ 8x; y 2 Xs ð22Þ
Therefore, we may let k� ¼ p�ðxÞ
pðxÞ x 2 Xs, and Eq. (18) exists. Accordingly, Eq. (19) will be satisfied as well.

In conclusion, Theorem 3 is proven. h

Furthermore, the following lemma also can be deduced.

Lemma 3. For any p(x) with the normalization factor kp, and if denote k�p ¼ 1
NS

P
xi2X�S

pðxiÞ
p�ðxiÞ, then kp is the lowest bound of k�p, that

is k�p P kp, and the equality k�p ¼ kp
� �

is satisfied if and only if k�pp�ðxÞ can exactly approximate p(x).
Proof. Combining the definition of k�p and Theorem 3, we have
k�p ¼
1

NS

X
xi2X�S

pðxiÞ
p�ðxiÞ

¼ k� ð23Þ
Consequently, k�p ¼ k� ¼
R

k�p�ðxÞdx P
R
pðxÞdx ¼ kp, where the equation is satisfied if and only if k�pp�ðxÞ can consistently

approximate p (x).
Hence, the lemma is proven. h

Furthermore, if p(x) is not a normalized form, the ESA can use k�p to ideally estimate its normalization factor kp, where k�p
is defined as:
k�p ¼
1

NS

X
xi2X�S

pðxiÞ
p�ðxiÞ

ð24Þ
Moreover, if let
kk
p ¼

1
NS

X
xi2Xk

S

pðxiÞ
pkðxiÞ

ð25Þ
kk
p will converge to the stable value when the ESA converges to the optimal stable solution. Hence, the change of kk

p between
two consecutive k can be used as the decision to terminate the ESA learning process. That is, the ESA can be credibly termi-
nated if kk

p is changing less than a tiny scalar even if we augment the searching scope (parameter b) of generating support
samples, which is very useful for practical applications.

Thus, the following corollary can be obtained by combining Theorem 3 with Lemma 3.

Corollary 1. In the ESA, for any p(x), when NS ?1 and the iteration number tends to infinity, then the optimal solution correlates
to the minimal k�p.

Even if NS and the iteration number cannot reach infinity, the conclusion of Corollary 1 will help us to theoretically select
the optimal kernel function and its parameters.

3.3.3. Computational complexity of the ESA
The computational complexity is a key property for any computing methods in practical applications. Firstly, it is clearly

that the space complexity of ESA is O(NS), which is equivalent to traditional rejection sampling algorithms, but is far less than
most of other machine learning algorithms. The time complexity of the ESA comprises two aspects. The first one refers to the
time complexity of generating random numbers and performing rejection sampling strategies, and can be expressed as O(NS)
by a direct theoretical analysis, which is also equivalent to traditional rejection sampling methods. The second one refers to
the time complexity of computing p(x) for every new generated candidate support sample, which is O(NS log NS) on comput-
ing p(x) of NS support samples, when a fast estimation algorithm [54,53] is used. As a result, the total time complexity of the
ESA is O(LNS(1 + log NS)), where L is the total number of iterations for performing the evolutionary sampling. Although it is
slightly greater than that of the traditional rejection sampling method (i.e., O(LNS)), the time complexity of the ESA is still
appealing, because O(LNS(1 + log NS))/L is only dependent on the number of support samples, but not linearly related to N
(the number of original data), as required as in almost all traditional machine learning methods.

In summary, when the space and time complexities are considered together, the computing efficiency of the ESA will be
remarkably superior to most existing machine learning methods when they are applied to the same problems.
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4. Simulation analysis of ESA

In the above section, some theoretical conclusions have been deduced mainly with respect to the theoretical convergence,
approximation performance, and computational complexity. Here, an experimental analysis will be performed in order to
further assert the theoretical properties of the ESA. At first, the following Hermite polynomial, expressed by p1, is introduced
as the testing density function [24]:
p1ðxÞ ¼ ð1þ xþ 2x2Þe	x2 ð26Þ
Obviously, p1 is point-wise computable but not a normalized form, and
R
p1ðxÞdx ¼ 2

ffiffiffiffi
p
p
� 3:5449 by theoretical calculation.

Similar to general machine learning methods, some initial conditions should be predefined in the ESA, including the ker-
nel function and corresponding hyper-parameters, the number of support samples NS, the maximum number of sampling
iterations, initial support samples, and the searching strategy. In this section, some experimental results will be reported
with different parameters settings. It should be pointed out that, though more reasonable kernel functions may engender
better approximation performance, for an unknown density function, it is difficult to select the optimal kernel function,
and it will be ignored in this paper (could be concerned with in practical applications). Thus, according to common experi-
ence and the statistical theory, the Gaussian kernel function listed in Eq. (5) will be a reliable selection and is more widely
effective when there is no any particular prior knowledge. In addition, fast Gaussian transform [54,53] can be used to com-
pute p(x) effectively.

In theory, the kernel width r, the number of support samples NS, the maximum number of iterations Kmax, and the initial
support sample set X0, all might influence the approximation performance. Accordingly, several groups of different experi-
mental results will be reported, respectively. Because the kernel width plays the crucial role in actual approximation perfor-
mance, the experimental results with different r will be firstly delivered, where the parameters setting NS = 300 and
Kmax = 500 are configured. In addition, NS random data are generated from the standard normal distribution as initial support
samples. For qk(x, y), Eq. (6) is used, where parameter b ¼ bl

1
NS

P
xi2XS

xi 	 �xk k is adopted and bl is linearly decreased from 20 to
1 with the progress of the evolutionary sampling, which is derived from experimental comparisons and our previous inves-
tigations on quantum-based particle swarm optimization algorithms [44,45,15,43], and can perfectly balance the weight
between the global optimization and the convergence speed.

Table 1 lists the approximation results obtained by the ESA with different r, where the optimal results for different per-
formance indexes are bold same as other tables, k⁄ refers to the evaluation of the normalization factor of p1 computed by Eq.
(24), Jerr refers to the approximation error defined as
Jerr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðpðxiÞ 	 pðxiÞÞ2

r
ð27Þ
where p(x) represents the target distribution (here it refers to p1), and p(x) represents the normalized output, that is p(x) =
k⁄p⁄(x). In addition, 1000 data points uniformly distributed on [	4, 4] are used in calculating Jerr. Moreover, the average
values and the standard deviations of 50 runs are recorded for Jerr and k⁄.

Fig. 1 gives corresponding visual experimental results, including the approximation curves with r = 0.5 and r = 0.7, and
corresponding changing curves of kk.

According to the changing curves of kk shown in Fig. 1, it is obvious that sampling learning can accurately converge to the
stable solution, which complies with the theoretical results analyzed in the preceding section. By analyzing Table 1 and Fig. 1
together, it can be found that, the sampling learning can obtain actual optimal approximation when reasonable r is adopted,
which contains not only the consistent output value but also the high evaluation precision of the normalization factor. Spe-
cifically, when r = 0.5, the error between the real value and the evaluation value obtained by the ESA is only 0.22%. Further-
more, the obtained error is only 0.054% when r = 0.3. From Table 1 and Fig. 1, another apparent conclusion is that, if k⁄ is
closed to the real value, the corresponding approximation error Jerr is also very small, and vice versa, which accords as well
with the theoretical conclusions. Here, a phenomenon ought to be explained is that the obtained evaluation value k⁄ with
r = 0.3 is slightly smaller than the exact value, which is seemingly not consistent with Lemma 3. The reason is that the actual
k⁄ is obtained with finite NS, while the conclusion in Lemma 3 is obtained with infinite NS. So, due to numerical computation
error with finite NS, the actual k⁄ might be slightly different than the real normalization factor.
Table 1
The approximation performance on p1 obtained by the ESA with different kernel width r.

r Jerr k⁄

0.3 0.2259 ± 0.0513 3.5433 ± 0.0045
0.5 0.1118 ± 0.0293 3.5529 ± 0.0056
0.7 2.6864 ± 0.0039 4.0072 ± 0.0039
0.9 6.0151 ± 0.0324 4.6367 ± 0.0072
1.1 8.4591 ± 0.0418 5.1083 ± 0.0126
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Fig. 1. The approximation results obtained by the ESA with r = 0.5 and r = 0.7.
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A good approximation performance can be obtained when suitable r is adopted, but bad r will still result in poor
performance. When r = 0.7, 0.9, 1.1, the obtained k⁄ becomes far from the real value, and the corresponding approximation
precisions also decrease, which also accords with the conclusions of Lemma 3 and Corollary 1. So, a simple kernel parameter
selection mechanism in terms of k⁄ is still required for the ESA in practical applications.

Table 2 reports the experimental results on p1 obtained by the ESA with r = 0.5, Kmax = 500 and different NS, where all
performance indices are calculated by means of 50 runs.

From Table 2, it is obvious that increasing NS will remarkably improve the approximation performance, while the average
computing time will increase nearly linear. In addition, increasing NS will not cause any overfitting that must be carefully
dealt with in almost all traditional machine learning methods including neural networks, fuzzy systems, support vector
machines, etc. Furthermore, Table 3 gives the experimental results on p1 obtained by the ESA with r = 0.5, NS = 200 and dif-
ferent Kmax. Wherein, it can be found that if NS is fixed, then increasing Kmax will not remarkably improve the approximation
performance, while the actual computing time will increase linearly.
Table 2
The different approximation performance on p1 obtained by the ESA with different NS.

NS Jerr k⁄ Avg_time

100 0.3033 ± 0.1117 3.5609 ± 0.0141 0.7065
200 0.1585 ± 0.0513 3.5556 ± 0.0084 1.2795
400 0.0971 ± 0.0356 3.5537 ± 0.0041 2.3725
600 0.0732 ± 0.0209 3.5521 ± 0.0030 3.4391

1000 0.0538 ± 0.0136 3.5505 ± 0.0023 5.5912



Table 3
Different approximation performances on p1 obtained by the ESA with different Kmax.

Kmax Jerr k⁄ Avg_time

200 0.2091 ± 0.0616 3.5577 ± 0.0089 0.4947
400 0.1680 ± 0.0490 3.5569 ± 0.0072 1.0113
600 0.1617 ± 0.0508 3.5558 ± 0.0087 1.5234

1000 0.1490 ± 0.0517 3.5542 ± 0.0063 2.5882
2500 0.1471 ± 0.0410 3.5525 ± 0.0080 6.7631
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According to the theoretical analysis, increasing NS or Kmax will improve the actual approximation performance. However,
the experimental results demonstrate that a larger NS will be more effective than a larger Kmax with limited computing
capacity, the reason of which can be explained as follows. Obviously, increasing NS will engender a larger variable scope
for the SSM output and make the ESA obtain better support samples. In contrast, if NS is fixed, increasing Kmax cannot enlarge
the variable scope of the SSM output, and better solution will not be included into the valid solution space.

In summary, we suggest that if enough computing capacity is available, we should make NS as adequate as possible, while
Kmax can be adaptively adjusted based on the changing status of kk. Moreover, according to Lemma 3, whether NS is adequate
can be determined by inspecting the changing of k�p with different parameters. In general, if increasing NS does not bring a
significant decrease of k�p, then NS has been adequate. In the same way, the optimal kernel function and corresponding
parameters could be adaptively selected as well by means of Lemma 3 and Corollary 1.

Although theoretical results show that the optimal r should relate to the minimal k�p, however, selecting the optimal r
that relates to the right inflection point on the changing curve of k�p may provide more parameters’ robustness in practical
applications.

Be means of the above experiments, the actual performance of the ESA with different parameter settings have been exam-
ined, including different kernel parameters like NS and Kmax. The experimental results indicate that the conclusions are con-
sistent with the theoretical analyses. Moreover, the theoretical analyses have also proved that different initial support
samples do not influence the ultimate approximation precision, which has also been verified in the above experiments.
For example, although we set initial support samples far from the region with high probability, such as the range [15,50],
the ESA can still converge to an accurate solution, where only some additional evolutionary searching steps are required.
Even so, if the probability values of given initial support samples with respect to the target distribution are extremely small
(for example support samples are all around 250 in the above experiments), then reasonable solution will not be achieved
due to the limited numerical precision of ordinary computers.

5. Applications

Derived from ideas in rejection sampling and evolutionary computation, a novel way of machine learning, the evolution-
ary sampling learning has been proposed, which includes the support sampling model and the so-called evolutionary sam-
pling approach. Theoretical and experimental results demonstrated that the proposed ESA can acquire an optimal explicit
approximation by minimizing the total variation distance to any density function where only point-wise computability is
required. This remarkable characteristic cannot be easily achieved by current machine learning methods according to our
knowledge, which creates a novel way to solve machine learning problems within a probabilistic framework.

Obviously, if a certain problem can be transformed into a probability approximation problem within the probabilistic
framework, then it might be resolved by evolutionary sampling learning. Not surprisingly, many application problems
can be transformed into such approximation problems. Specifically, at least the following problems faced in machine learn-
ing and statistics have the above characteristics, including mainly the Monte Carlo Integration problem, classical sampling
problems, data modeling problems, etc. Next, we will start to explore how to solve these practical application problems, for
which some novel algorithms should be put forward.

5.1. The Monte Carlo integration problem

As introduced in Section 2, the Monte Carlo integration problem can be expressed as the following calculation problem.
f p ¼
Z

f ðxÞpðxÞdx ð28Þ
where p(x) is a probability density function and is point-wise computable, and f(x) is any computable function. This problem
is a basic form of many popular estimation problems in statistics and machine learning. Unfortunately, we usually cannot
explicitly compute fp, and numerical methods should be adopted to deal with it. The following computing formula, primarily
put forward by von Neumann, etc., is the most popular way.
f p ¼
Z

f ðxÞpðxÞdx � 1
N

XN

i¼1

f ðxiÞ ð29Þ
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where {xi} is a sample set generated from p(x), which reflects the intrinsic property of p(x) from a statistical viewpoint. Obvi-
ously, the larger N the higher evaluation accuracy will be, and an adequate N is required in practical applications.

Nonetheless, to gain a good sample set {xi} that can really reflect p(x) is a very difficult task. Nowadays, the rejection
sampling strategies are the most valid method to obtain reliable samples for arbitrary p(x). However, there is a substantial
disadvantage for the existing rejection sampling methods as they require a huge sampling chain length to work well. That is,
even if given a large value of N, all traditional rejection sampling methods could not effectively gain reasonable samples in
theory, and it is difficult to evaluate the rationality of these obtained samples. In contrast, derived from its novel design, the
ESA can wonderfully tackle such practical problem.

When the SSM is introduced, problem (28) can be rewritten as
f p ¼
Z

f ðxÞpðxÞdx ¼ 1
NS

XNS

i¼1

Z
f ðxÞkðx; xiÞdx ð30Þ
In addition, k(x; h) is a type of standard kernel density function, and can directly generate valid samples. This property will
not only offer a better chance to get the explicit expression of fp, but also help the algorithm achieve a better evaluation pre-
cision of fp by means of a standard Monte-Carlo integration formula. Consequently, the ESA has noteworthy advantages for
Monte-Carlo integration problems compared to traditional rejection sampling methods.

5.2. Classical sampling problem

For a classical sampling problem, we mainly try to gain N samples from any point-wise computable probability density
function p(x), such as the uniform distribution, and normal distribution. In theory, how to ensure the obtained N samples can
exactly reflect the original distribution is still an open problem in most cases (except for a few standard probability
distributions). As introduced before, there are three types of methods that can be used, including pseudo-random number
generating methods [11,36,28], inverse transform sampling methods [11] and rejection sampling methods [50]. The first
two types of methods have higher performance but poor applicability. In contrast, the rejection sampling has wide applica-
bility but dissatisfactory performance. That is, it cannot be assured that the obtained finite samples really reflect the original
distribution, and many duplicate samples will exist. It is very difficult to perfectly tackle such problem in theory due to the
intrinsic disadvantages of current methods.

Nevertheless, the evolutionary sampling learning presented in this paper provides a new possibility to solve well the
above problem, of which the concrete implementation can be considered as follows. For any point-wise computable density
distribution p(x), we firstly obtain an approximation p(x) by means of ESA, and then auxiliary sampling procedures based on
p(x) are borrowed to get samples. In fact, if p(x) is a good approximation of p(x) with extremely high precision, and random
data samples can be directly generated from p(x), then the Metropolized independence sampler MIS [26] can be used to
obtain perfect samples from p(x). Obviously, if a Gaussian function is used as the kernel function, we can directly generate
data samples from p(x). In summary, the following data sampling method based on the evolutionary sampling approach is
proposed below.
A data sampling algorithm using the evolutionary sampling approach
1
 Given p(x) and desired sample number N, construct an initial empty sample set X = {}, and let k = 1.

2
 Obtain an approximation p(x) to p(x) using the ESA.

3
 Generate a starting sample x1 from p(x).

4
 Generate a candidate sample yc from p(y). n o

5
 Generate a random number R from a uniform distribution on [0, 1] and, if R 6 aðxk; ycÞ ¼ min 1; pðxkÞpðycÞ

pðycÞpðxkÞ is

satisfied, then yc is successfully accepted, and let xk+1 = yc; otherwise reject it and let xk+1 = xk.

6
 Set k = k + 1; if k P kT, then set X = X [ {xk}.

7
 If cardinal number jXj < N, then go to step 4.

8
 Output N desired samples from X.

9
 END
In the above algorithm, kT is the required number of iterations for which the corresponding Monte Carlo Markov Chain
(MCMC) has been executed to approach its invariant distribution p(x), which comes from the original rejection sampling
strategy also required in MIS (Metropolized independence sampler). Though selecting a reasonable kT is a hard task in
traditional rejection sampling methods, however, if x1 � p(x) is satisfied, then kT = 1 might be considered. On the other hand,
because the probability of generating x1 (p(x)) is approximately equivalent to p(x), with a high precision, so parameter kT = 1
also can be configured as the default setting in our new algorithm, which will bring more practicality.

Next, two following test distribution functions p2 and p3 are employed to analyze the actual performance of the data sam-
pling algorithm using the ESA (DSAuESA).
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Fig. 2. The output approximation results on p2 and p3 obtained by the ESA with r = 0.2.
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Obviously, we have
R
p2ðxÞdx ¼ 1 and

R
p3ðxÞdx ¼ 1. Besides, similar to p1, p2 is a unimodal function, while p3 is a bimodal

function. Here, experimental configurations are considered as follows. A Gaussian kernel function is used, Ns = 300,
Kmax = 300, and the test data used in evaluating the error between p(x) and p(x) are generated from Uniform [	4, 20].
Fig. 2 gives two typical approximation results of p(x) to p(x), where the Gaussian kernel width is r = 0.2.

Fig. 2 shows that the ESA can achieve good approximation results on p2 and p3, where original distribution curves are
displayed with blue solid lines, and approximation outputs are drawn with red dotted lines. Furthermore, Table 4 lists
the approximation performance obtained by the ESA on p3 with different r. From Table 4, it can be found that, with the
increase of r, k⁄ firstly increases and then decreases, where the range 0.1–0.2 of r relates to the smaller approximation
errors, and the errors between k⁄ and real values are all less than 1%.

Fig. 3 shows the sample data histograms obtained by our new algorithm on p2 and p3, where the number of sample data
is 1000 and r = 0.2. Clearly, the obtained histograms are consistent with the original distribution. Moreover, the average
accepting ratios of candidate samples at step 5 in our algorithm are 98.6% and 97.5% for p2 and p3, respectively, in terms
of 50 times of running results. The high average accepting ratio reflects that there are only few repetitive samples in the
obtained sample set, which is very good for many practical applications.

In fact, because the SSM output can approximate not only the desired distribution p(x) with high precision, but also p(x)
can be directly sampled, the good performance of the DSAuESA is predictable and provable in theory. Obviously, on top, the
experimental results accord with the theoretical predictions and demonstrate the effectiveness of DSAuESA. In addition, we
should point out that, for traditional sample acquisition methods, it is a trouble to deal with bimodal or multimodal distri-
butions. Especially, in traditional reject samplers, constructing suitable proposal distributions is an open problem too. For
example, when classical MIS and the Gaussian proposal distribution are used to get samples for the objective distribution
p3, our experimental studies indicate that, even if the optimal kernel width is chosen by hand, the sampling efficiency is still
extremely low.
Table 4
The approximation performance obtained by the ESA on the test distribution p3 with different kernel
width r.

r Jerr k⁄ Avg_time

0.05 0.6947 ± 0.1897 1.1808 ± 0.0807 0.5331
0.1 0.1723 ± 0.0231 0.9941 ± 0.0046 0.5809
0.2 0.1022 ± 0.0192 0.9985 ± 0.0024 0.6653
0.3 0.2603 ± 0.0221 1.0420 ± 0.0028 0.7388
0.4 0.5785 ± 0.0182 1.1319 ± 0.0022 0.7903
0.5 0.9213 ± 0.0145 1.2450 ± 0.0035 0.8275
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Fig. 3. Sample data histograms on p2 and p3 obtained by our new algorithm, where the number of samples is 1000 and r = 0.2.
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In summary, because the good proposal distribution can be taken, DSAuESA gains better (absolutely not inferior) perfor-
mance than current data sampling methods. In fact, DSAuESA can have even more advantages for the cases of multimodal
distributions or those cases that only small quantities of samples are desired.
5.3. Data modeling

Data analysis is a basic task in machine learning, including data density estimation, data clustering analysis, and pattern
analysis, in which the focus is how to model the data. Many data modeling methods have been presented, including mainly
the kernel density method [25,51], the Gaussian mixture model [1,38], the (hierarchical) Dirichlet process model [32,47,48],
the Gaussian process model 39], the manifold model [41,55] and so on.

Within a probabilistic framework, for any one group of observed data XO (O refers to ‘‘Observed’’ or ‘‘Objective’’), there
must exist a probability distribution pO that reflects the possibility of the occurrence of each data xi. In theory, pO represents
the intrinsic characteristics of XO, and contains almost all information about XO. So, reconstructing pO is a fundamental strat-
egy to modeling the original data, from which many other data processing algorithms might be implemented like clustering
and classification.

Nonetheless, as the number of samples in XO is finite, XO cannot represent anything else than themselves in theory, such
that it is an impossible task to know the real pO from XO. That is, only in terms of XO, we could never know what is the actual
thing behind XO, and so we can only obtain the estimation pE (or pM in machine intelligence) of pO by means of introducing
empirical knowledge (or artificial explanations). Accordingly, in order to obtain the approximation pM of pO, it is necessary to
impose some artificial interpretations on the observed dataset XO.

In practice, empirical knowledge (or prior knowledge) could be introduced to achieve a good estimation pM of pO by using
machine learning methods. The prior knowledge includes the type of model representation, the model parameters and other
auxiliary conditions. For example, in kernel density estimation methods, prior knowledge refers to the type of kernel func-
tion and kernel parameters. If these artificial interpretations are removed, then the obtained results will have no actual
meanings.

Among all data density estimation methods, the Parzen window method and the kernel density estimation method, as the
two classical representatives, are widespread used [37,19,23], but they have difficulties in selecting a suitable kernel width
[21,27,51] and in dealing with large-scale data [10,8]. It should be clarified that, although many modified kernel density esti-
mation methods declared they can adaptively select the kernel width, they also implicitly introduce other artificial restric-
tions [51] according to our theoretical analysis.

As known, to obtain the approximation estimation pM of pO from XO, two problems should be firstly considered. The first
one is how to explicitly express pM, and the other one is how to measure the approximation difference. Among all density
estimation methods, the kernel density estimation method, the (hierarchical) Dirichlet process model and the Gaussian pro-
cess model all primarily concern the first problem. Conversely, all parameter selection strategies aim to deal with the second
problem. In this paper, a novel density estimation method, named as the density estimation using evolutionary sampling
learning (ESLDE), is proposed here. Wherein, the support sample model is employed to express pM, and the evolutionary
sampling learning is used to train the support sample model and construct an approach of selecting the optimal kernel
width.

To evaluate the approximation precision of pM to pO, a measuring standard must be predefined, which may not be directly
formulized from pO, in the sense that pO cannot be explicitly expressed based on XO. To tackle this problem, we could employ
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some characteristics of pO as the measure index, because that XO will actually inherit some intrinsic characteristics of pO

within the statistic sense. In other words, the fact that XO is a representative of pO indicates that XO will have the same char-
acteristics as pO, which makes them tightly connect with each other. Therefore, it will be good to obtain the optimal pM by
minimizing the difference, on these measure indices, between XO and pM.

In general, two types of characteristics may be concerned for any probability density pO. The first type is its intrinsic fea-
tures related to its moments (for example the 1st order moment), and the second type refers to all other apparent properties.
Obviously, if pM has more similar characteristics to XO, then pM will approximate pO with higher precision. In this study, an
apparent characteristic is considered as the measure index, of which the concrete forms with respect to pO and XO are defined
as follows.
Table 5
The est

h1

0.1
0.12
0.14
0.16
0.18
0.20
0.22
f ðx; h1; pOÞ ¼
Z

pOðtÞgðx; t; h1Þdt ð33Þ

f ðx; h1; XOÞ ¼
1

NO

XNO

i¼1

gðx; xi; h1Þ ð34Þ
where NO is the number of samples in the dataset XO, g(x, xi; h1) is also a kernel function (in general, a Gaussian kernel func-
tion may be considered).

Thus, if pM is represented by the SSM, then we have:
pMðx; h2Þ ¼
1

NS

XNS

i¼1

gðx; xi; h2Þ ð35Þ
Furthermore,
f ðx; h1; pMÞ ¼
Z

pMðt; h2Þgðx; t; h1Þdt ¼ 1
NS

XNS

i¼1

Z
gðt; xi; h2Þgðx; t; h1Þdt ð36Þ
Again, if g(x, xi; h1) is a Gaussian kernel function, then the following equation is satisfied.
Z
gðt; xi; h2Þgðx; t; h1Þdt ¼ gðx; xi; h3Þ ð37Þ
where h2
3 ¼ h2

1 þ h2
2. Moreover, f(x, h1; pM) can be written as
f ðx; h1; pMÞ ¼
Z

pMðt; h2Þgðx; t; h1Þdt ¼ 1
NS

XNS

i¼1

gðx; xi; h3Þ ð38Þ
In summary, the following learning objective can be concluded in the ESLDE.
f ðx; h1; pMÞ ! f ðx; h1;pOÞ � f ðx; h1; XOÞ ð39Þ
For the problem in Eq. (39), f(x,h1;XO) is clearly point-wise computable with given h1. So, the above learning objective can
be solved by means of ESA, where the optimal solution depends on the numerical approximation degree between f(x, h1; XO)
and f(x, h1; pO) regardless of the parameters of the SSM.

Nonetheless, if the ESA is directly used to solve the above problem, the required computational complexity will be rela-
tively large. Although the space complexity only requires O(NO + NS), the time complexity will reach O(LNS(1 + NO log NS)). To
avoid this high computational burden, a variant of the ESA is proposed to better tackle the problem (39). In the new
algorithm, only one sample is processed at every iteration, so that the learning procedure can be accomplished in an online
manner (as opposed to batch learning). The detailed procedure is described as follows.
imation results on p3(x) obtained by the ESLDE and SKDE, respectively, where a = 20.

JESLDE
err JSKDE

err
k⁄ Avg_time

0.3613 ± 0.0859 0.2229 ± 0.0633 1.0095 ± 0.0016 0.2546
0.3737 ± 0.1456 0.1834 ± 0.0267 1.0096 ± 0.0007 0.2854
0.3353 ± 0.1501 0.2018 ± 0.0273 1.0097 ± 0.0004 0.3595
0.1844 ± 0.0374 0.2377 ± 0.0299 1.0106 ± 0.0021 0.6444
0.1723 ± 0.0403 0.2861 ± 0.0249 1.0157 ± 0.0050 1.0222
0.2203 ± 0.0324 0.3373 ± 0.0205 1.0304 ± 0.0041 1.0516
0.3577 ± 0.0322 0.3994 ± 0.0241 1.0528 ± 0.0055 1.0528
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Density estimation using evolutionary sampling learning – ESLDE
1
 Given dataset XO, configure kernel parameters h1, h2, and h3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

1 þ h2
2

q
.

2
 Configure the value of NS, generate NS sample data to construct initial support sample set XS of SSM by randomly
selecting from original dataset XO, and let k = 1.
3
 Randomly select a candidate support sample yc from XO with the same probability value.

4
 For each xi in XS, update f(xi, h1; XO) using the online estimation strategy.

5
 Let j ¼ maxfpðxiÞ 	 f ðxi; h1; XOÞg

i
, and use greedy strategy to choose the jth support sample as candidate updating

sample at this iteration. n o

6
 Get a random number R � Uniform[0, 1]; if R 6 aðxj; ycÞ ¼max 1	 f ðxj ;h1 ;XOÞ

pðxjÞ ;0 , then receive the new candidate

support sample successfully, otherwise reject it.

7
 If new candidate support sample is successfully received, then update the jth support sample xj = yc and

p(xi)xi = 1, 2, . . . , NS, and then let f(xi, h1; XO) = p(xi).

8
 If kk

XO
< e or k P kmax, then go to the next step; otherwise let k = k + 1 and go to step 4.
9
 Output the density estimation pM(x, h2) of pO(x) according to the obtained support samples and formula (35).

10
 END
For step 4 in the above algorithm, the following strategy is designed to update f(xi, h1; XO). Firstly, we compute f(xi, h1; yc)
for all i, then the new values of f(xi, h1; XO) for all i are recomputed by the weighted average between previous f(xi, h1; XO)
and f(xi, h1; yc) (weighted ratio might be considered as 0.3 � k:1). In the ESLDE, e is a threshold used to terminate the learn-
ing procedure. According to theoretical results, there is kk

XO
P 1, and a smaller value will produce better results. Therefore,

with respect to e, a value with a slightly larger than 1 may be configured. From our preliminary studies, e = 1.01 is a good
value for practical applications.

Next, the effectiveness of the ESLDE is explained. First, for f(xi, h1; XO), with the progress of evolutionary sampling, more
and more (even repeated) original sample data are used to estimate f(xi, h1; XO), and the final estimation result will converge
to the exact result calculated by formula (34). Thus, to prove that the learning procedure of ESLDE is effective, we only need
to prove that the output of the obtained SSM, p(xi) = f(x, h1; pM), will gradually approximate f(xi, h1; XO). Compared with the
standard ESA, the following suppositions will hold in the ESLDE.

(a) Ak(t, x) = p(x) and p(t)Ak(t, x) = p(x)Ak(x, t) holds.
(b) for every chosen updating support sample z, there is pðzÞ

pðzÞ ¼ 1.
(c) the candidate updating support sample (a certain support sample in the current SSM) is greedily selected based on
j ¼maxfpðxiÞ 	 pðxiÞg

i
.

Based on the above three preconditions, the sampling procedure of the ESLDE is the same as the standard ESA, so the
ESLDE still holds similar convergence and approximation performance; that is, p(xi) = f(x, h1; pM) will gradually approximate
f(xi, h1; XO).

In the ESLDE, the selection of Kernel width h1 and h2 should be pre-considered for practical applications. Obviously, we
should select optimal h1 to make f(x, h1; XO) ? f(x, h1; pO) with more precision, and optimal h2 to make pM(x, h2) completely
represent pO (x) when NS ?1. In practice, h2 = h1 might be considered, in a similar way to the density estimation algorithm
proposed by Klemela [23]. Further studies indicate that h2 may be slightly larger than h1, and h2 = 1.618h1 is a better config-
uration from our experimental comparisons. Thus, only one parameter should be set. Similar to the ESA, we can conclude
that lower k⁄ will relate to better h2. In addition, when the robustness of the actual computation with finite support samples
is considered, taking the right inflection point in the changing curve of h2 as the optimal h�2 to k⁄ is still a good selection.

Next, p3(x) is also employed as the test probability density function to examine the estimation performance and the
parameter influence of the ESLDE. In the following experimental results, we set kmax = 10,000, NS = 300, and let the number
of original data N = aNS, where a is a ratio factor.

Table 5 reports a group of experimental results on p3(x), where a = 20 is fixed and h1 is variable. Besides, the standard
kernel density estimation (SKDE) method is also used for comparison, in which the Gaussian kernel function is used as well.

In Table 5, JESLDE
err denotes the estimation error between the result obtained by the ESLDE and the original probability den-

sity function p3(x); likewise JSKDE
err denotes the estimation error between p3(x) and the result obtained by the standard kernel

density estimation method, where the error calculation is the same as definition (27), and the kernel width used in the SKDE
equals to h1. Avg_time records the average computational time of the ESLDE in 50 runs. Table 5 illustrates that different h1

will result in different k⁄, especially the changing degree of k⁄ between h1 = 0.18 and h1 = 0.2 increases rapidly. According to
the above discussion, h1 = 0.16 or h1 = 0.18 may be considered as the optimal kernel width. Consequently, the estimation
error JESLDE

err is also very small. Compared to SKDE, the ESLDE obtains better estimation results than the SKDE with their respec-
tive optimal settings for the kernel width. Besides, it is significant that the optimal kernel width in the ESLDE can be



Table 6
Estimation results on p3(x) obtained by the ESLDE and SKDE, respectively, with different a, and their respective kernel widths.

a JSLDE
err JSKDE

err
k⁄ Avg_time

3 0.2977 ± 0.0523 0.3300 ± 0.0610 1.0211 ± 0.0052 1.0612
5 0.2739 ± 0.0559 0.2725 ± 0.0546 1.0162 ± 0.0066 0.8886

10 0.2292 ± 0.0417 0.2130 ± 0.0373 1.0116 ± 0.0032 0.8285
20 0.1823 ± 0.0465 0.1889 ± 0.0334 1.0096 ± 0.0005 0.6147
30 0.1822 ± 0.0713 0.1812 ± 0.0311 1.0099 ± 0.0002 0.7485
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adaptively selected through a theoretically trustworthy manner, which is different from traditional kernel density estimation
methods.

To further investigate the estimation performance of the ESLDE with different a, Table 6 lists a group of experimental
results obtained by the ESLDE and the SKDE with different a, where h1 = 0.16 for ESLDE (by adaptive setting) and h = 0.12
(by hand) for SKDE.

From Table 6, it can be found that the larger number of original data will result in higher estimation precision for both the
ESLDE and the SKDE. Although almost equivalent results can be obtained for two estimation methods with their respective
kernel width settings, how to select the optimal kernel width is very difficult in the SKDE, as no theoretical foundation can be
used. In contrast, the kernel width can be adaptively selected by reliable rules in the ESLDE.

In addition, if h1 = 0.18 is adopted in the ESLDE, the estimation error will reach JESLDE
err ¼ 0:1450 0:0304 when a = 30,

which is greatly superior to the minimal JSKDE
err . On the whole, the actual estimation performance of the ESLDE is superior

to that of the standard kernel estimation method.
Next, the computational complexity of the ESLDE will be analyzed. Clearly, its space complexity is O(NS + 1), independent

of the number of original data N, but the space complexity of the standard kernel density estimation method is O(N). In gen-
eral, we have N P NS, so the space complexity of the ESLDE is very low. Because the pre-learning process is required for the
ESLDE, its time complexity contains two parts: one that concerns the learning process, and the other one the computing out-
put. From simple analysis, the former is O(L � NS), and the later is O(NS), where L is the total number of iterations executed in
the whole sampling learning procedure. Comparatively speaking, the time complexity of the SKDE is O(N), where no learning
process is required. The above considerations demonstrate that, with some additional expense in learning time, the ESLDE
achieves several novel and significant algorithm performance improvements, such as higher practical efficiency and lower
space complexity, strongly concerned in modern massive-data processing methods [8]. Furthermore, the ESLDE can
accomplish the leaning process in an online manner, when the original data can be continuously dealt with one by one
(in sequence), which is very useful for online large-scale data processing tasks.

In addition, it can be proven that, the approximation objective of the ESLDE is equivalent to a weighted kernel density
estimation method [51] with a particular kernel width. However, due to the different learning approach, the ESLDE possesses
more flexibility and better performance in selecting the kernel width and in dealing with online data, by means of low com-
putational complexity and excellent solving procedure (i.e., the ESLDE does not require solving a linear or quadratic pro-
gramming problem).

In summary, the ESLDE is very suitable for online data analysis, which is the most significant merit of the ESLDE compared
to all existing density estimation methods. More than this, the sampling learning may be exploited more and it has good
potential in data analysis and processing by combining current clustering and classification strategies within a probabilistic
framework. Such studies will be carried out in our future works.
5.4. Other discussions

In the above subsections, three types of application problems that can be solved by evolutionary sampling learning have
been studied, including the Monte Carlo integration problem, traditional random number generating problems, data mod-
eling problems. On the other hand, the theoretical studies show that the evolutionary sampling learning might also be valid
for other many machine learning problems, such as the evolutionary computation, particle filters, and probabilistic neural
networks. Next, some qualitative analysis will be discussed.

Evolutionary computation, as an important method in computational intelligence, has been successfully applied to many
problems. In our previous studies, Sun et al. proposed a novel particle swarm optimization algorithm named as the quantum
behaved particle swarm optimization (QPSO) [44,45,15,43], in which a good optimization performance has been demon-
strated by many experimental results on practical applications. In evolutionary sampling learning, a similar searching strat-
egy is used to find the most possible candidate support sample. In theory, a better searching strategy of generating candidate
support samples will produce a better global converge performance. As for the evolutionary optimization, its main objective
is to rapidly find the optimal solution. When the evolutionary sampling strategy is used to search the optimal solution, the
SSM may be employed to record last optimal solutions that have been found. Thus, this new designed evolutionary optimi-
zation algorithm based on the evolutionary sampling strategy can be viewed as the combination of the QPSO and the sim-
ulated annealing optimization. Our experimental results display that, although the new algorithm based on the evolutionary
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sampling strategy cannot gain more prominent advantage than the QPSO on some classical test searching functions, how-
ever, deserved from the integrated merits of the QPSO and simulated annealing, the new algorithm might be more suitable
than the QPSO and traditional simulated annealing method in some particular optimization problems.

Particle filter [14,9,40,49] is a very effective tool for solving (or simulating) sophisticated system identification problems,
like the object tracking problem in machine vision. In particle filter, a solution (described by the probability distribution of
different possible positions) is represented by a group of particles, and these particles evolve with time to instantaneously
reflect the new system state in real time. In general, resampling is used as a tool to adjust the number of different particles
with different positions. Wherein, the core of particle filter is to rapidly obtain a new particle set that can better represent the
current problem solution, that is, the probability distribution of all possible positions. However, resampling methods can
only select new particles from those anterior particles, but not from all possible positions, which is also the meaning of
resampling. Thus, it is difficult to obtain an optimal particle set related to the real problem solution. In contrast, if evolution-
ary sampling strategy is used to evolve particles, then all possible positions are reachable for new particles, which will help
achieve the optimal particles continuously.

For other possible applications, it has been analyzed that, if a problem can be represented or transformed into a density
function approximation problem within a probabilistic framework, then this problem may be solved by means of the evo-
lutionary sampling strategy. Wherein, many novel properties owned by the evolutionary sampling strategy will also be
inherited by the new designed methods. We deem that the above novel proposals and conclusions will help us come up with
many original and effective machine learning methods and will drive us to carry out more explorations on evolutionary sam-
pling learning.
6. Conclusions

Motivated by ideas in evolutionary computation, rejection sampling and function approximation, a novel machine learn-
ing strategy, the evolutionary sampling learning was put forward in this paper, which can obtain an approximation expres-
sion to any point-wise computable probability density function. Based on the above strategy, a new machine model – the
support sample model (SSM) – and a novel solving method – the evolutionary sampling approach (ESA) – were proposed,
respectively. Our theoretical and experimental studies have demonstrated that the evolutionary sampling leaning can be
used to solve many practical application problems which can be expressed as density function approximation problems
within a probabilistic framework. This brilliant property expands the application scope of machine learning, has visible
theoretical and practical significance and draws forth a new thought on the way of performing machine learning. More
specifically, compared with existing machine learning methods, the evolutionary sampling learning owns the following
important characteristics:

1. Due to the introduction of the concept of support samples, a novel method was developed to express sampling problems.
Thus, the evolutionary sampling learning not only inherits the good convergence and the learning ability of rejection sam-
pling, but also gains more widespread applicability.

2. Benefiting from the combined merits of evolutionary computation and rejection sampling, the evolutionary sampling
learning can stably converge to the optimal solution without any other limitations like specific initial conditions or dif-
ferent learning parameters. Clearly, for many machine learning methods, different initial conditions or different learning
parameters may influence not only the learning efficiency but the accuracy too.

3. Derived from its intrinsic merits, the evolutionary sampling learning can effectively determine when its evolutionary
learning should be terminated, in terms of the evaluated normalized factor kk, which is an impossible task in the tradi-
tional rejection sampling framework.

4. The evolutionary sampling learning can also be viewed as a new development of evolutionary computation with appli-
cation to machine learning. Traditionally, evolutionary computation is only used to solve optimization problems raised by
machine learning methods. On the contrary, in evolutionary sampling learning, learning problems are directly described
as probabilistic problems. Moreover, the particular evolutionary sampling approach can be used to obtain the optimal
objective solution, where the evolutionary mechanism is deeply coupled into the problem objective. More specifically,
the evolutionary sampling learning is directly guided by the local difference between the actual output and the desired
output related to every position (x), but not by the total difference between the actual output and the desired value that is
empirically considered in existing machine learning methods.

5. The space complexity of evolutionary sampling learning is very low, and it only depends on the number of the support
sampling models and it does not totally relate to the number of learning data. Moreover, the evolutionary sampling learn-
ing can also accomplish an online learning task. The above two properties make ESL more practical for the online real-
time processing of large-scale data, whose ability would be strongly aspired by many current researches.

In summary, we proposed a novel way of realizing machine learning within a probabilistic framework, called the evolu-
tionary sampling strategy, where some very worthy merits, concluded as above, were demonstrated by theoretical analysis
and experimental results. In addition, by developing more theoretical extensions, some troubled machine learning problems
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could be solved as well by the means of evolutionary sampling strategy, which represent our motivation to continue to fur-
ther explore this field in our near future, with further applications and theoretical studies on the ESA.
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