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An Extended Reinforcement Learning Framework
to Model Cognitive Development With

Enactive Pattern Representation
Zhenping Xie and Yaochu Jin , Fellow, IEEE

Abstract—In order to make machines more intelligent, it is
inevitable to understand human-like cognitive development, in
which adaptive, autonomous and progressive evolution of cogni-
tive decision-making in interacting with the environment plays
a key role. Inspired by enactive artificial intelligence and evolu-
tionary sampling learning, a new cognitive development learning
model termed evolutionary enactive learning (EEL) is proposed in
this paper. The proposed model is constructed by extending the
reinforcement learning framework and introducing the utility-
selection theory to guide the coevolution of pattern representation
and decision-making policies. Theoretical analysis on the model’s
validity of EEL is given. To further demonstrate the effectiveness
of the proposed method, two simulated cognitive decision-making
tasks are designed, in which pattern representation and decision-
making must be jointly developed to achieve good cognitive
performance. Our experimental results clearly demonstrate that
the resulting learning process is rational and effective. Finally,
we indicate that the proposed EEL could be readily further
extended by introducing existing machine learning techniques
to solve more practical applications.

Index Terms—Cognitive decision-making, cognitive develop-
ment, enactive artificial intelligence, evolutionary utility-selection,
pattern representation.

I. INTRODUCTION

RECENTLY, research on computational modeling of
human-like intelligence have been attracting increasing

attention in the field of artificial intelligence [1]–[3]. In such
models, decision-making and performing suitable behaviors
by properly recognizing the state of the agent itself and
environment [4], [5] is a fundamental. Meanwhile, modeling
the cognitive development process, in particular how machines
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can autonomously develop their cognitive decision abilities,
is crucial for understanding human intelligence [6]–[10]. In
general, an effective cognitive decision system should com-
prise two key components: 1) an efficient sensory-state pat-
tern representation model and 2) a good decision-making
model [11], [12].

Over the past 30 years, reinforcement learning (RL)
has become the most basic way for achieving autonomous
decision-making capabilities in artificial systems [13]–[15].
Traditional RL methods mainly focus on how to obtain a con-
vergent reward value-function with respect to a set of decision
policies [15]. Accordingly, the learned reward value-function
for state-action pairs will be used as a prior experience
to choose the optimal action for a future perception state.
However, how to construct efficient sensory state pattern rep-
resentation, and how to define optimal decision policies model
must be separately considered by means of other machine
learning methods. For example, a Gaussian multilayer network
is employed to manually integrate the state-action policies
and the corresponding value function in [14] for the car-
pole balancing problem. In [11] and [12], deep convolutional
neural networks [16] are adopted to efficiently represent high-
dimensional sensory inputs and the value function of a massive
number of decision policies. However, these predefined black-
box representation structures cannot be adapted to satisfy with
the requirements for explicitly understanding the environmen-
tal states and performing sufficiently robust decision-making
like the human brain.

According to the viewpoints of enactive artificial intelli-
gence, the constitutive autonomy and adaptivity are necessary
for the cognitive development of human life [17]. Here, the
constitutive autonomy and adaptivity must contain the vari-
ability of pattern representation structures of sensory-states
and decision-making policies. To imitate the above-mentioned
characteristics of human cognitive development, evolution-
ary enactive learning (EEL) is put forward in this paper by
extending the RL framework. In EEL, an extra utility proba-
bility value is allocated to each possible pattern representation
item and decision policy item, where utility probability val-
ues indicate the statistical usefulness of all possible items
according to historical experience. Then, the utility probability
values can be used to select the most useful memory items,
which is different from the value function used in conventional
RL. Moreover, evolutionary exploration and selective memory
can be implemented to evolve state pattern representation and

2379-8920 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9481-9599
https://orcid.org/0000-0003-1100-0631


XIE AND JIN: EXTENDED RL FRAMEWORK TO MODEL COGNITIVE DEVELOPMENT WITH ENACTIVE PATTERN REPRESENTATION 739

decision policies by means of integrating a utility-selection
strategy into the evolutionary sampling learning (ESL) method.

Similar to considerations in [11] and [12], the core
design of EEL is to close the loop between the objec-
tives of machine learning and action rewards. In deep
RL [11] and alphaGo [12], action rewards are converted into
an expectation value function, and the learning objective
is defined as the optimal approximation to the value func-
tion using deep neural network. In EEL, not only reward
value functions but also utility probability value functions
are designed. Here, the definitions of utility probability
value functions conjointly inherit from the ideas of statis-
tical machine learning and RL. Thus, machines may carry
out more autonomous statistical learning guided by cogni-
tive action rewards from the surviving environment instead
of direct supervised learning [18], which should be pivotal
for creating more autonomous and robust artificial intelligence
systems.

The rest of this paper is organized as follows. In Section II,
related machine learning methods are briefly introduced. In
Section III the implementation of EEL algorithm and some
theoretical analysis are described. In Section IV, experimen-
tal results on two simulated cognitive decision-making games
are presented and analyzed. Finally, in Section V some
conclusions of this paper are provided.

II. RELATED LEARNING METHODS

This paper mainly explores the coevolution of cognitive
decision-making capabilities along with enactive pattern rep-
resentation driven by individual actions under environmental
constraints, which has so far not yet been studied in the liter-
atures. Even so, some aspects of questions have been touched
upon in several machine learning methods. In the following,
we will briefly introduce and discuss these methods.

A. Deep Reinforcement Learning

For the decision-making process to be adapted to complex
input states like those in Atari games, deep RL method was
put forward in [11]. There, deep neural network modeling and
Q-learning are seamlessly integrated into a unified learning
framework. In the framework, two key strategies are designed:
1) a batch of latest state-action-reward tuples (st, at, rt) are
considered as the updating training objective of deep neural
network and 2) current decision-making system is viewed as
the optimal representation of past experience, and new experi-
ences are gathered by autonomously exploring and exploiting
possible actions and corresponding environmental rewards. In
deep RL, the Q-value function in RL

Q̂(s, a)← Q̂(s, a)+ α

(
r + γ max

a′
Q̂

(
s′, a′

)− Q̂(s, a)

)
(1)

is replaced as follows:

Q(φ(s), a; θ)← r + γ max
a′

Q
(
φ
(
s′
)
, a′; θ−)

(2)

where s′ is the subsequent state of s after action a is executed,
φ(•) refers to a pretransform for primitive system states, and
θ−, θ represent the parameters of deep neural networks on

consecutive stages. Specifically, the updating approximation
objective can be defined to optimize θ by collecting a batch
of latest Q(φ(sj), aj; θ−).

Although deep RL can progressively develop and optimize
individual decision-making in cases, where the input states are
high-dimensional, it could only support a limited number of
actions. That is, deep RL may fail to scale up to a huge number
of possible actions as seen in human life. In alphaGo [12],
extra policy networks and Monte Carlo tree search strategy
are introduced to cope with decision evaluation in the presence
of huge possible actions. Even so, explicit pattern and policy
representation still cannot be realized.

In this paper, a new mechanism, termed utility probability-
based evolutionary selection learning strategy is introduced to
support the coevolution of explicit pattern and policy repre-
sentation learning. We consider that the environmental rewards
for an agent’s actions could be converted into utility proba-
bility values for related pattern representation and decision
policies. Thus, all learning and optimization objectives can be
defined by transforming, distributing, and propagating utility
probability values.

B. Evolutionary Optimization

Evolutionary computation [19], [20] is a powerful tool
for optimization in control systems [7], [21], [22], machine
learning [16], [23], [24], evolutionary robotics [25], and many
other applications [26], [27]. In general, optimization prob-
lems can be described as the following form:

Minimize f (X), s.t. X ∈ S ⊆ RD (3)

where f (X) is an evaluable function, S is the correspond-
ing decision space of dimension D. For an cognitive learning
problem, the objective is to seek optimal actions or action
probabilities from all possible actions for all possible observed
inputs. Here, the dimension D should equal to the number
of possible inputs multiplied by the dimension of the action
space, which may become very large. Conventional evolution-
ary optimization methods may become less effective because
only a limited number of fitness evaluations may be allowed.
To address this issue, special evolutionary optimization strate-
gies should be designed for the evolutionary optimization
of cognitive development learning, e.g., surrogate-assisted
evolutionary optimization [28].

C. Pattern Analysis

Pattern analysis [29], [30] is a fundamental element
of human cognitive capabilities, mainly consisting of
pattern representation and pattern classification [31].
Pattern representation [32]–[35] refers the way how a pat-
tern is described using numerical forms, while pattern
classification [36]–[38] performs the task of distinguishing
and recognizing different patterns. In general, the classification
of an observed datum x can be formally defined as

Cj = fc(φ(x), θ) (4)

where, Cj is the index of the pattern class in pattern domain
C, fc(•) is a classification function with parameter θ , and φ(•)
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is a pattern representation transform with respect to original
physical signals. Moreover, a pattern analysis model should
contain pattern feature representation, classification model,
and learning method of parameter θ .

For pattern feature representation, it is often manually
designed [39], [40] or extracted using statistical learning
methods [41], [42]. Nowadays, common classification mod-
els include decision tree methods [43], [44], support vector
machines [45], [46], and neural networks [16]. In order to
train the model parameter θ , unsupervised or supervised
learning strategies can be employed [47].

Though large amount of researches have been carried out in
past several decades, there are little work on how to develop
a type of pattern analysis systems that are able to completely
autonomously evolve based on the active interaction with the
environment in which the individual is. Recently, deep neural
network methods [16], [34] offered a possible way of jointly
learning pattern representation and classification provided that
a huge number of labeled samples are available. Despite this,
the huge number of labeled samples must be prepared by
hand or other tools. Lately, deep RL [11] and alphaGo [12]
further improved the learning autonomy by combing RL, in
which supervision information could be created by consec-
utively simulating decision actions and getting subsequent
environmental rewards.

In this paper, an enactive pattern representation strategy
is proposed for explicit modeling of complex pattern repre-
sentation, which is well complementary to neural network
modeling.

D. Evolutionary Sampling Learning

In our previous research [48], a novel machine learning
approach within a probabilistic framework, termed ESL was
put forward. It was shown that ESL can be used to acquire
an approximation representation to any point-wise computable
probability function. The learning process of ESL can be
formulated as

p t(φ(x); θ t)→ π t(φ(x)) (5)

for the learning objective p∗(φ(x); θ∗) ≡ π∗(φ(x)), where
p t(•; θ t) is the approximation representation of π t(φ(x)) at
time t, and θ t is composed of a subset of past perceptual
data. When the learning procedure of ESL terminates, there
has π t→∞(φ(x)) ≡ π∗(φ(x)) or π t→∞(φ(x)) → π∗(φ(x))
for different cases.

Interestingly, ESL could be viewed as a dynamic evolution-
ary process or an online statistical learning process. Therefore,
ESL may be widely applicable to problems those can be con-
verted into probability representation learning problems. In
this paper, we will employ ESL to evolve cognitive system
by introducing utility-selection strategy.

III. EVOLUTIONARY ENACTIVE LEARNING

This section will first introduce the framework of EEL,
followed by the designed details of the evolutionary pro-
cess in EEL. We then describe the core algorithms used

Fig. 1. Framework of EEL.

in EEL. Finally, some theoretical discussions on the model
are given.

A. Conceptual Framework

For an autonomously learnable cognitive system and its
surviving environment, we suppose that it can continuously
perceive two types of information: 1) the environmental states
and 2) the internal states of itself. We also assume that a cogni-
tive system may make decision actions that will result in some
causal changes to the environmental states and/or internal
states. According to the viewpoints of enactive AI [17], there
is no other information that could be used in the developmental
learning of a fully autonomous cognitive system.

For sake of the convenience, we introduce cognitive space
as a concept to represent the integrated system composed
of intelligent agents and their surviving environment. Thus,
a cognitive space will be a closed system, and the cognitive
development of an agent in a cognitive space can be seen
as a procedure of continuously executing individual utility-
selection. Here, utility-selection goals can include, e.g., the
optimization of certain function [11], [12], [14], statistically
optimal prediction on future system states [4] or optimal sur-
viving robustness [6], [7]. Though cognitive development may
have diverse utility-selection goals, it should be an essen-
tial task for cognitive development learning to discover and
memorize the intrinsic laws embedded in a cognitive space.
Accordingly, the core task of pattern representation learning is
to computationally model these intrinsic laws, while the results
of decision policy learning reflect personalized utility-selection
preference.

The generic framework of EEL is illustrated in Fig. 1. The
proposed autonomous agent comprises three kinds of memo-
ries and five process modules. It evolves its cognitive behaviors
by continually interacting with its surviving environment. In
addition, a symmetry representation model (SRM) as a prior
experience is introduced to enactively construct explicit pattern
and decision policy representation.

In the proposed EEL framework, an SRM is designed to
model all possible pattern exemplars of given input sensory-
states and decision policies that may be necessary for the agent
to fulfill desired autonomous tasks. In SRM, the symmetry rep-
resentation strategy aims to realize the enactive constitution
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TABLE I
FIVE COGNITIVE FUNCTION MODULES IN EEL

of explicit pattern representations related to decision policies.
To be specific, two types of patterns are considered in SRM,
namely, ground patterns and abstract patterns. Here, ground
patterns refer to those patterns that can be explicitly repre-
sented by means of symmetry information structures on space,
time and/or movement positions, which is inspired by the sym-
metry theory of physical laws in the real world. By contrast,
abstract patterns are considered to be represented by a logic
combination of ground patterns also with respect to space,
time and movement correlation like in our physical world.

Among three types of memories in the EEL framework,
working memory is used to store temporary, shared variables
required for four process modules as illustrated in Fig. 1. In
contrast, pattern exemplar set and decision policy set mem-
ories are used to store two types of persistent cognitive
knowledge data (individual experience), respectively. For five
cognitive process modules, their main functions are explained
as in Table I.

To explain the role of each component of the proposed EEL
framework in Fig. 1 in plain language, we take a football
player starting to learn playing football as an example. As
a beginner, he/she has little memory/skill for playing foot-
ball. As the player practices playing football, he/she must
perceive the environmental and internal states for instance,
by observing the positions of the football and players, and
experiencing the amount of force when touching the football.
The above information is represented by the module “state
perception” in Fig. 1. To improve the skills, the player must
learn the physical laws governing the movements of the foot-
ball and the playing strategies or behaviors of other players.
These are denoted by the module “symmetry pattern extrac-
tion” and “pattern representation learning.” In addition, the
module “policy learning” includes a collection of possible
skills for playing football, while the module “decision selec-
tion” is the decision-making process that aims to maximize

the reward. Finally, different memory units are needed, includ-
ing “working memory,” “pattern exemplar set memory,” and
“decision policy set memory.”

B. Evolutionary Process of EEL

1) Formal Definitions: According to the above conceptual
framework of EEL, some formal definitions will be first pro-
vided. Without loss of generality, we use {x t}t≤T to represent
all observable states of a cognitive space within a period of
time T. Let x t = {x t

i }i=1,2,...n, where x t
i is a subset of x t

and different subsets may overlap, and n is the number of all
subsets. Similarly, we use {a t}t≤T to represent all actions per-
formed in the past, and let a t = {a t

l }, where a t
l ∈ A and A

is the set of all possible actions. Meanwhile, we use {r t}t≤T

to represent obtained reward from the cognitive space, also r t

may contain multiple components. It should be noted that, r t

may be invalid or null in some time instants.
Moreover, we use � to denote the set of all possible

pattern representation items, where � = {<�k, uk>} and
�k = <{φj({x t}t≤T , θj)}j∈Ck>, φ̃ = {φj({x t}t≤T , θj)}j∈C is
called as the set of ground pattern representation, uk is an
utility probability value and Ck is a subset of C (the set of all
possible ground pattern representation items). We denote the
decision policy set as � = {Rl = <�l, al, ul, r̂l>}l∈L, where
�l ∈ � , al ∈ A , ul, and r̂l are the utility probability value and
the expectation reward value of decision policy Rl. The defi-
nition of r̂l is similar to the expectation reward value designed
in RL.

According to above definitions, the learning parameters of
a cognitive system will contain pattern representation param-
eters {θl}, combination index sets {Ck}, and decision policy
set {Rl}, if the forms of all possible ground pattern trans-
forms {φj(•; θj)} and all optional actions could be predefined
as prior knowledge. It should be noticed that, the deci-
sion policy set � = {Rl = <�l, al, ul, r̂l>}l∈L could as
well be implicitly expressed using a deep neural network as
in [11], [12], and [14]. Obviously, {r t}t≤T is the only super-
vision information that can be used to guide the evolution of
an autonomous cognitive system.

In above definitions, two types of pattern representation
are considered, one is ground pattern representation, and
the other is abstract pattern representation. Ground patterns
reflect the basic pattern structures like a corner or a line
considered in machine vision, while abstract patterns reflect
high-level pattern structures like a flower or a house. In an
autonomous cognitive system, the above considerations are
inevitable [34], [49], [50]. Furthermore, decision policy set
{Rl} may be considered as explicit logic reasoning rules [51],
interpretable fuzzy rules [52], or representative experience
tuples [11]. In addition, utility probability variables u are
newly designed for each pattern representation item and
each decision policy item. They are used to reflect the rel-
ative memory importance of every required memory item in
a cognitive system.

2) Evolutionary Learning Process of EEL: As illustrated
in Fig. 2, a cognitive agent can perceive environmental states
x t

E and internal states x t
A, perform decision behaviors a t, and
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Fig. 2. Evolutionary learning process of EEL.

receive action reward r t from the cognitive space. Here, we
suppose that the r t value should be ultimately evaluated by
the cognitive agent itself. Moreover, the pattern representation
transforms {�k} and decision policies {<�l, al, ul, r̂l>} are all
internal components of a cognitive system. They may be grad-
ually evolved by adapting to its surviving environment. So,
there exists implied information exchange between the inner
and the outer of a module denoted by dash lines.

The above evolutionary learning process contain three core
parts: 1) getting new decision experience according to latest
states of the cognitive space; 2) updating utility probabil-
ity values of the current decision policies; and 3) adjusting
pattern representation and decision policies. Some detailed
implementations will be described below.

In this paper, the symmetry representation is charac-
terized by relation tuples <� t

l (x
t), a t

l , r t
l > and � t

k =
<φj({x t}t≤T , θj)>j∈Ck . We assume that all symmetry rela-
tions could be extracted in advance by artificially analyzing
causalities existing in the cognitive space. Furthermore, for
the satisfaction of computability, all causalities are divided
into two types: 1) complete or 2) incomplete. For a given
decision policy, the complete causality means that, optimal
actions and corresponding expectation rewards can be com-
pletely determined by the input. By contrast, input information
in a decision policy is insufficient to decide an optimal action
for an incomplete case. No doubt that incomplete cases may be
more common and widely useful in many practical applica-
tions especially in random systems. For example, first-order
Markov processes are usually considered to approximately
model conditional causalities in which true causalities may be
very complicated [53], [54]. In this paper, we consider that all
necessary symmetry relations could be predefined, and fur-
ther research on how to adaptively learn them will be our
future work.

Next, because a decision policy Rl = <�l, al, ul, r̂l> relates
to a valid pattern object �l, then pattern representation learn-
ing has to be jointly done together with decision policy
learning. The following learning steps are carried out.

1) Newly perceived action rewards r t+1 and cognitive
space states x t+1 are used to construct one new expe-
rience <� t+1(x t+1), a t+1, r t+1> by means of given
SRM.

2) New reference decision rewards r t+1
l are evaluated for

every leant decision policies to form <R t
l , r t+1

l >.
3) decision policies {R t+1

l }, pattern representation �k =
<φj(•, θj)>j∈Ck and � = {<�k, uk>} are jointly opti-
mized by means of utility-selection learning strategy.

In summary, the proposed framework makes it feasible
to guide the joint learning of pattern representation and
decision policies only using decision reward as supervised
information. Clearly, the above learning process is consid-
erably different from existing traditional machine learning
methods. Specifically, the utility-selection learning strategy is
introduced to solve explicit learning of pattern representation
and decision policies.

C. Core Algorithms

In this section, we will introduce the core algorithms nec-
essary for implementing the framework of EEL. According
to the above discussions, all required symmetry relationships
could be predefined. Here, the learning updating could be trig-
gered when a new experience item <� t(x t+1), a t+1, r t+1>

is acquired. For the updating of the expectation reward
r̂ t+1

l in R t+1
l , we directly borrow the updating strat-

egy of Q-value function Q t+1(� t+1
l , a t+1

l ) designed in
RL. Moreover, Inspired by the process of human decision
development [55], utility-selection learning strategies will be
used to progressively improve decision-making and pattern
representation. Several studies in experimental psychology
by Rieskamp and Otto [55] indicated that human participants
could use strategy selection theory to gain nearly the best
predictions after sufficient RL loops. Next, based on utility-
selection learning strategy, several core algorithms of EEL are
discussed.

1) Utility Value Updating: In EEL, utility probability val-
ues are introduced to guide memory selection of pattern
representation and decision policies. In principle, those items
with higher utility probability values should be preferentially
stored. On the contrary, those items with low utility probabil-
ity values may be forgotten or replaced by new useful item.
The utility probability value updating equations for pattern
items and decision policy items can be defined as follows,
respectively:

u t+1
k = λ1 × u t

k + μ1

(
<� t

(
x t+1

)
, a t+1, r t+1>,� t

k

)
(6)

and

u t+1
l = λ2 × u t

l + μ2

(
<� t

(
x t+1

)
, a t+1, r t+1>, R t

l

)
(7)

where λ1, λ2 ∈ [0, 1) are forgetting factors. Furthermore, we
may consider μ1(<� t(x t+1), a t+1, r t+1>,� t

k) = μ1(r t+1)

if dist(� t(x t+1),� t
k(x

t+1)) is the minimum distance for all
pattern items in {� t

k} and it is less than ε1, otherwise
μ1(<� t(x t+1), a t+1, r t+1>,� t

k) = 0. Similarly, we may
consider that μ2(<� t(x t+1), a t+1, r t+1>, R t

l ) = μ2(r t+1)

if dist(<� t(x t+1), a t+1>,<� t
l (x

t+1), a t
l >) is the minimum

distance for all decision policies in {R t
l } and it is less

than ε2, otherwise, μ(<� t(x t+1), a t+1, r t+1>, R t
l ) = 0. In

practice, we may consider μ1,2(r t+1) equal to constants
or r t+1. Thus, the utility probability value may be viewed
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Algorithm 1 Decision Policy Learning Algorithm in EEL

1 Given a distance measure on the pair <� t
l , a t

l >,
prior parameters ε, and NR, let decision policy
set � t = {R t

l } = Ø in which t = 0.
2 For every newly generated experience

R t+1
n = <� t

n(x
t+1), a t+1

n , r t+1
n >, perform steps 3-8.

3 If |� t|<NR, � t+1 = � t ∪ R t+1
n and go to step 2;

otherwise, go to next step.
4 Find the decision policy item R t

o in � t that has
the minimal distance to R t+1

n , then compute
u t+1

n = μ2(r t+1).
5 If distR(R t

o, R t+1
n )<ε, update R t

o using
statistical combination between R t

o and R t+1
n ,

and go to step 2; otherwise, go to next step.
6 Re-choose the decision policy item R t

o in � t

with minimum π t
o , then compute p t

o, p t
n, π t

n .
7 Get a uniform random number z on [0, 1]; if

z< min
{

1,
π t

n
π t

o

}
receive R t+1

n provisionally, then
go to the next step; otherwise exit learning loop
and go to step 2.

8 Generate another uniform random number z′ on
[0, 1], if z′< max{0, 1− π t

o
π t

n
× p t

n
p t

o
}, replace R t

o

with R t+1
n in � t to form � t+1.

9 END

as a discounted cumulant on the historical usefulness of
a memory item.

2) Decision Policy Learning Algorithm: Here, we discuss
how to update decision policies based on utility-selection
learning strategy. When the number of storable decision
policy items denoted by NR is bounded, there will exist
two type of possible updating cases: 1) slightly adjust-
ing parameters of certain decision policy and 2) replac-
ing an old policy with newly generated policy. Here, ε-
approximation is used to decide whether newly coming experi-
ence <� t(x t+1), a t+1, r t+1> could be integrated into existing
decision policies. More generally, we employ ESL proposed
in [48] to implement utility-selection learning for decision
policy updating.

Let the approximation objective π t(•) ≡ u t+1
l (•) and

introduce p t(•) defined as follows:

p t
l =

∑
j

(
exp

(
−dist2R

(
R t

l , R t
j

)
/σR

)
× u t

j

)
(8)

where, distR(•, •) denotes the distance between two decision
policies, σR>0 is a scalar parameter, and exp(•) is the expo-
nential function. So, exp(−dist2R(R t

l , R t
j )/σR) could be viewed

as a correlation coefficient between two decision policies.
Then, the ESL objective is defined as to make p t(•)→ π t(•)
on all decision policies. In addition, let p t

n and π t
n denote

the evaluated and expected utility probability values of newly
acquired experience <� t(x t+1), a t+1, r t+1>, respectively, in
which π t

n = u t+1
n = μ2(r t+1).

In summary, Algorithm 1 is proposed for decision policy
learning.

In above decision policy learning algorithm, the decision
policy replacing strategy originates from ESL approach [48],

Algorithm 2 Statistical Decision Output Algorithm in EEL
1 Given a distance measurement on (�oi,�l), and a

current decision policy set � t = {R t
l }.

2 For current observed input �ob(x t+1), compute
w t

l for every feasible policy.
3 Randomly choose a decision policy R t

c with

probability w t
c∑

l w t
l
.

4 Output the action of R t
l as the current decision

action.
5 END

which enables the decision policies to strike a good balance
between different possible options when the number of policy
items to be stored is limited. Moreover, this strategy may pro-
duce two benefits: 1) discarding those decision policies with
small utility probability values and 2) preserving high diver-
sity among different decision policies. In addition, the function
distR(•, •) and the statistical combination strategy on R t

o and
R t+1

n should be extra designed for practical applications.
3) Pattern Representation Learning: In EEL, we use utility

probability value uk to determine whether a possible pattern
representation �k should be stored in the cognitive agent’s
memory. For most cases, we may select top NP items with the
highest utility probability values if the number of storable pat-
tern representation items NP is limited. This will be our default
consideration in this paper and could be viewed as a simple
variant of the strategy considered in classical RL methods,
where all possible pattern representation items are as possible
as memorized. Nevertheless, ESL presented in our previous
study [48] also could be employed to subtly keep most useful
pattern representation items like the decision policy learning
algorithm presented above. Finally, existing unsupervised pat-
tern representation learning could also be integrated into the
framework of EEL to offer more flexible learning abilities.

4) Decision Selection Algorithm: Here, we further discuss
the problem how to use decision policy to choose behavior
actions. When input states are continuous, there may be no
exact match between new input observation � t+1

ob and pattern
representation items in {� t

l }. Usually, there will exist multiple
optional decision policies partially suited for the current input.
Inspired by statistical inference theory, the statistical decision
output strategy is presented. And the following weight value
evaluation for every decision policy is designed:

w t
l = exp

(
−dist2�

(
� t+1

ob ,� t
l

)
/σ�

)(
u t

l

)γ (9)

where, γ ∈ (0,∞) is a deformation factor, dist�(•, •) denotes
the distance between two pattern representation items, σ� is
a scalar factor. In particular, dist�(•, •) may only output ∞
or 0 for the cases, where only exact input match is valid.

Thus, we consider w t
l as a relative probability value to

choose corresponding decision policy R t
l . Moreover, we pro-

pose the decision selection algorithm in EEL in Algorithm 2.
Equation (9) is compatible to the cases that multiple actions

are available for the same input state, especially in case of
finite discrete input states. In addition, the observation � t+1

ob
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may be information-incomplete. That is, � t
l in R t

l should con-
tain more information to make an absolutely credible decision.
In addition, some variable definitions on dist�(•, •) may be
allowed for practical problems.

D. Theoretical Discussions

The proposed EEL framework aims to realize a newly
autonomous development framework of cognitive capabili-
ties. Theoretical performance analysis on EEL is provided in
Appendix A in the supplementary material.

As a preliminary instantiation of the basic idea in enactive
AI, the evolutionary mechanism of EEL mainly contains the
following three aspects: 1) two persistent memory sets (pat-
tern representation set and decision policy set), which are the
representation of the solutions; 2) the utility maximum priority
criterion, which is designed as the objective of the evolution-
ary optimization; and 3) ESL strategy employed as the search
and selection strategies of the evolutionary optimization.

Compared to DRL [11], EEL has strong capability of learn-
ing explicit pattern and policy representation, which is also
motivated from enactive AI model. On top of this, several new
evolutionary mechanisms are designed as described above.
Consequently, EEL can take into account of not only complex
sensory inputs as in DRL, but also a huge number of optional
actions as in [12]. In addition, deep representation networks
designed in DRL is also available in EEL to model highly
complex observation inputs. In summary, EEL could be seen
as attempt to imitate the developmental process of human cog-
nitive control. It should be mentioned that the decision policy
learning algorithm developed in EEL can be extended to DRL
to optimally select a small number of experience tuples.

Compared to other existing RL methods, EEL aims to
realize more flexible and explicit (white-box) pattern and pol-
icy representation learning framework envisioned in enactive
AI [17]. Note that for problems that can be well solved by
traditional RL, EEL does not necessarily have advantage in
performance.

In addition, as a generic learning process, EEL is open to
extensions and specialization for different practical applica-
tions. For example, the distance measure methods on pattern
items and decision policy items, and combination of repre-
sentation forms for abstract pattern, and pattern item memory
strategy should be flexibly defined in practical applications.

IV. EXPERIMENTAL STUDIES

A. Simulation Scenarios

In this part, two simulated cognitive decision-making
scenarios are designed to examine the performance of
EEL. Scenario I is a color stripe sequence cognition game
and Scenario II is an optimal coverage selection game. Note
that the cognitive space of Scenario I is discrete while that of
Scenario II is continuous. Scenario I is constructed by abstract-
ing the main logic rules used in the building blocks game.
Scenario II is inspired by skill learning in agricultural planting,
in which some natural laws must be considered. For example,
the seasons change periodically, the crop yield may be related

Fig. 3. Illustration of color stripe sequence cognition game.

to the seasonal temperatures, and only one effective planting
may be allowed in one year.

In the two simulated cognitive tasks, we assume that an
intelligent agent is able to develop its cognitive behaviors
by continuously perceiving the environmental states, making
cognitive decisions, and receiving rewards.

1) Color Stripe Sequence Cognition Game: The color stripe
sequence cognition game is illustrated in Fig. 3. In this game,
a pattern is represented as a sequence of color stripes with
certain sequence. The bottom-left part in Fig. 3 shows 20 such
sequence patterns with different sequence lengths.

The rules of the game are described as follows. An intel-
ligent agent can continuously receive sequenced color stripes
generated by a random strategy. At any time, it can select
a group of consecutive color stripes with a certain length
from the current observed scope, and then submit the selected
sequence to get an evaluation reward. The top half part in
Fig. 3 shows a sequence of color stripes continually gener-
ated by randomly jointing true color stripe pattern sequences
and noisy color stripes. In Fig. 3, some small white and black
blocks below the original color stripes are plotted to visualize
the starts and ends of true color stripe pattern sequences.

Thus, the cognitive space of the color stripe sequence
cognition game comprises the following three components:
1) a group of true color stripe sequence patterns; 2) positive
evaluation rewards for any cognitive submission; and 3) the
rule of generating observable sequenced color stripes. The
evaluation reward for every submission is 1 if the submitted
color stripe sequence is identical to the embedded true pattern
sequence; otherwise, the reward value is 0.

The cognitive learning objectives include: 1) to find as many
true sequence patterns as possible and 2) to pick out as many
as possible correct pattern sequences embedded in observed
sequenced color stripes. In addition, we assume that when
a submission is performed, all color stripes before submis-
sion point will disappear and cannot be used again. Thus,
the previous decision submissions will affect future deci-
sions. Note that the above two cognitive tasks may be slightly
conflicting with each other.

In addition, seven different colors are used to define color
stripes, and the length of each color stripe pattern sequence
ranges from 2 to 9. The total number of different true sequence
patterns is denoted by NC, and the total number of true
sequence patterns in once simulation is denoted by NL.
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Fig. 4. Illustration of the optimal coverage selection game.

2) Optimal Coverage Selection Game: In this simulated
cognitive game, we assume an agent can perceive an 1-D
time series, in which one real number can be observed at one
time instant. It is expected in the game that an agent can per-
form optimal coverage selection on every peak zone, in which
only once coverage selection will be effective for one peak
period.

At first, we employ variable z(t) of the following standard
Lorenz chaos system to simulate 1-D time series:

dx

dt
= σ(y− x)

dy

dt
= x(ρ − z)− y

dz

dt
= xy− βz (10)

where σ = 10, ρ = 28, β = (8/3), and initial states [xyz]t=0 =
[011.05]. The sampling interval between two subsequent time
points is set as t = 0.005 (called as a time interval).

Fig. 4 shows a segment of the simulated value curve with
a sequence of coverage selection results being attached, in
which green segments denote effective coverage selection
results while red segments denote failed coverage selection
results. For the above periodic curve, we consider that a local
varying period starts at one valley point (a local minimal point)
and ends at its sequential valley point. Moreover, we call the
left half part of a local varying period as up half-period, and
the right half part of a local varying period as down half-
period. In the following we will introduce the rules of the
game in detail.

1) An agent can start a coverage selection at the current
time instant if there is no unclosed previous selection,
and will get rewards after some time instants for once
operation. Once effective coverage selection must start
from the up half-period. Otherwise, coverage selection
becomes failing and no positive rewards will be given.

2) If once coverage selection is effective, then we set the
coverage range as 50 time intervals. If one coverage
selection is failing, the coverage range is set to ten
intervals. That is to say, if an agent performs a cor-
rect coverage selection, then it can gain positive rewards
after 50 time intervals. By contrast, the agent will be
able to perceive the effect of a failing selection after
ten time intervals. Some effective or failing selections’
results indicated by green or red color, respectively, are
illustrated in Fig. 4.

3) For one effective coverage selection ci, the reward is
defined as

Rwd(ci) =
50∑

j=1

Z(Tci(j)) (11)

where Tci(j) denotes the jth time instant after the coverage
start of coverage selection ci. Z(•) is the variable value with
respect to every time instant.

For this game, the developmental self-intention of individual
cognitive evolution aims to get as much reward as possible and
as less failing selection as possible. This is however, under
the constraint that only limited memory capacity for storing
experience is available to the agent. Usually, there exists one
optimal coverage start point for every local varying period
and doing one effective selection for one local period only is
the best.

3) Discussions: In the two scenarios, we introduce more
realistic considerations for real-world problem solving, includ-
ing requirements on flexible and explicit pattern/policy rep-
resentation and unknown environmental changes. DRL or
existing RL methods will have difficulties in modeling these
two problems. For example, for Scenario I, it will be very
difficult for DRL to construct balanced training sample set
without an explicit pattern representation learning mechanism.
Besides, DRL is not able to extract explicit pattern represen-
tation, which does not satisfy with the problem requirements.
Although the classical RL methods do not have the above
issues they are very likely subject to combinatorial rule
explosion problem.

Solving Scenario II requires open system states prediction
cognition, where decisions need to be made in the presence
of uncertainty. Existing RL methods have no joint learning
strategies for state prediction in the presence of uncertainty
and policy decision required in enactive AI.

By contrast, EEL is equipped with several newly added
mechanisms including flexible and explicit pattern/policy rep-
resentation, and a utility-selection learning strategy, which are
essential requirements in enactive AI.

B. EEL Algorithm Settings for the Two Scenarios

As previously indicated, EEL is a generic learning frame-
work for modeling collaborative cognitive development learn-
ing. To apply EEL to the two cognitive learning tasks discussed
above, problem-specific settings need to be defined. Mainly,
three modules: 1) pattern representation learning; 2) deci-
sion action selection; and 3) decision policy. learning should
be implemented in detail for above two cognitive learning
problems.

1) Settings for the Color Stripe Sequence Cognition Game:
In the EEL framework, we use tuples {<�k, uk>} to model
pattern representation learning, and those pattern representa-
tion items with high utility values should be memorized with
a higher priority. Here, the ground pattern representation is
denoted by φj, j = 1, 2, . . . , 7, in which the total number of
possible color stripes is 7. And a pattern �k is autonomously
constructed by combining another pattern �kj and a ground
pattern. That is �k = <φj> or �k = <�kj, φj>, in which it
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might be possible that �0 = {}. In addition, only two possible
actions, either to submit or not to submit, can be performed
for every observed pattern sequence. Thus, the representation
model of decision polies is fully complete according to the
Definition 1 in Appendix A in the supplementary material.

Moreover, uk could be defined as follows:

uk(t + 1) = λ1 × uk(t)+ ISk(t + 1)× (1− λ1) (12)

where

ISk(t + 1) =
{

1, perceived
0, otherwise

indicates whether pattern item �k is perceived at current time
instant t or not. The forgetting factor λ1 = 0.995 is used in
our simulations.

For the decision policies updating, we assume that
μ(<� t(x t+1), a t+1, r t+1>,<� t

l , a t
l >) equals (1 − λ2) or 0

for effective or failing decision submission, respectively. Thus,
we can define that

ul(t + 1) =
{

λ2 × ul(t)+ Iul(t)× (1− λ2), do submit
ul(t), do not submit

(13)

where

Iul(t) =
{

1, effective decision
0, failing decison

indicates whether the decision is effective or failing. The
updating factor λ2 = 0.6 is adopted by our experimen-
tal comparisons in this paper. Naturally, ul(0) = 0.5 could
be set as the default value for any sequence pattern items.
It is easy to see ul(t) ∈ (0, 1) for any t. In addition, we
assume that different pattern sequences are uncorrelated, so
exp(−dist2�(� t+1

ob ,� t
l )/σw) should be set to 1 if � t+1

ob ≡ � t
l ,

or 0 if not. Accordingly, w t
l = (u t

l )
0.5 is considered accord-

ing to Appendix A in the supplementary material. Thus, if one
observed color stripe sequence matches the conditional pattern
of a decision policy, the cognitive submission may be deter-
mined with a probability [((u t

l )
0.5)/((u t

l )
0.5 + (1− u t

l )
0.5)]. If

more than one pattern sequences in decision policies could be
matched at current observation, we may select the one having
the highest u t

k as the candidate decision policy.
2) Settings for Coverage Selection Game: For the optimal

coverage selection game, several parts of settings also need to
be specified include: pattern representation learning, coverage
selection decision policy learning, and decision output strategy.

For the pattern representation learning, a ground pattern
item φj is used to express a variable changing pattern of an up
or down half-period, and for simplicity, is denoted as a 2-D
vector (slope, duration)j, where, “slope” denotes the average
changing gradient, and “duration” the time length of the corre-
sponding half-period. Moreover, an abstract pattern �k can be
represented by a ground pattern or the combination of tuples
<φk1, φk2, φk2>. uk in {<�k, uk>} is defined as follows:

uk(t + 1) = λ1 × uk(t)+ ISk(t + 1)× (1− λ1) (14)

where

ISk(t + 1) =
{

1, perceived
0, otherwise

and λ1 = 0.995 is adopted from our experimental compar-
isons. Moreover, the distance metric on two pattern items is
defined by

dist(�1,�2) = max

(
abs(�1 −�2)

abs(�1)+ abs(�2)

)
(15)

where, �1 and �2 are two vectors, function abs(•) returns
a new vector by getting the absolute values of the input
vector’s values in each dimension, and function max(•)
outputs the maximum value of a vector. In addition,
exp(−dist2�(� t+1

ob ,� t
l )/σ�) is simplified to be 1 or 0 accord-

ing to ε−approximate criterion, where ε = 0.1 is used
according to our experimental analysis.

For coverage selection policy learning, the decision poli-
cies are described as the tuple <�l(φl1, φl2, φl3), al, ul, r̂l> in
terms of the framework of EEL, where �l is the combination
of three consecutive ground pattern items φl1, φl2, φl3, al is
an optimal coverage selection decision vector related to �l, ul

is the decision utility probability value, and r̂l denotes corre-
sponding weighted reward according to historical experiences.
Here, we define

ul(t + 1) = λ2 × ul(t)+ r̂l(t + 1) (16)

and

r̂l(t + 1) = β × r̂l(t)+ (1− β)× μRwd(t + 1) (17)

where, μRwd(t+1) represents the reward from the current valid
coverage selection experience <� t+1, a t+1, μRwd(t + 1)> at
time t+1. We set λ2 = 0.995, β = 0.99, and r̂l (1) = μl(t0) by
our experimental analysis, where t0 is the time instant when the
rule Rl was created. We use the relaxed distance threshold ε =
0.35 on � to determine whether a near decision policy Rl is
updated based on new experience <� t+1, a t+1, μRwd(t+1)>.

Decision variable al should also be gradually optimized for
this cognitive problem. Here, we assume al to be a 30-D
vector, in which each element denotes a probability of start-
ing coverage selection at a related time instant within the
time covered by �l(φl1, φl2, φl3). Next, the following action
optimization strategy is introduced:

prob(al, j, t + 1) =
⎧⎨
⎩

prob(al, j, t)× 1.2, effective selection
prob(al, j, t)× 1.0, no selection
prob(al, j, t)/1.2, failing selection

(18)

where j ∈ {1, 2, . . . , 30}, and 30 intervals are uniformly
distributed in the range related to �l.

In addition, the representation form used in coverage selec-
tion policies must involve unknown future states. Here, the
partial distance metric match is considered between the con-
ditional pattern of decision policies and current observation,
and the subpart <φl1, φl2> of �l is used to compute the match
degree between a decision policy and the current observation.
Moreover, if more than one decision policy is matched, we
choose the one with the maximum ul as the referenced policy.
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TABLE II
PERFORMANCE RESULTS OBTAINED BY EEL AND COMPARED

METHODS ON PROBLEM I WITH NL = 20000 AND NC = 40

C. Experimental Results

1) Results on the Color Stripe Sequence Cognition Game:
In this section, the experimental results on color stripe
sequence cognition game will be reported. For compari-
son, two random cognitive strategies, greedy random cogni-
tion (GRC) and balanced random cognition (BRC) will be
introduced before we discuss the experimental result.

The GRC learning strategy first seek whether there is a pat-
tern sequence that can be matched to stored pattern sequences.
If there is a match, that matched color stripe sequence will be
submitted; otherwise, a pattern sequence ranging from 2 to
9 in latest observation will be randomly select to explore new
possible color stripe pattern. The BRC learning strategy uses
a similar random searching strategy, but it does not always
submit matched color stripe sequence. We set the submission
probability as 0.8 to balance the requirement of exploring new
possible patterns and picking out known patterns. EEL will
automatically create all new possible pattern items according
to the latest observations. The earlier a pattern is stored, the
lower the utility value u will be. In our simulations, limited
storable pattern items NP = 200 is set as default, which we
found sufficient in our experiments.

In all simulations, we set the number of different true pat-
tern sequences NC = 40, in which the sequence length ranges
from 2 to 9. The ratio between the numbers of two types of
sequences with lengths of i+ 1 and i is set as 0.85. Between
two embedded true patterns, noisy sequences are added with
a probability of 50%. For those sequences with noise being
added, the noisy stripe subsequence length ranges from 1 to 5,
and possible color stripes are uniformly selected from seven
different color stripes.

Three performance evaluation indices are adopted in the
comparisons. The index “discovery ratio” indicates the ratio
of the number of totally discovered true patterns to NC. The
index “recall ratio” denotes the ratio of successfully picked
true patterns, and the index “precision” indicates the correct
ratio of cognitive submissions.

Table II lists the simulation results obtained by GRC,
BRC, and EEL. The simulation results are averaged over
50 independent runs.

The results in Table II demonstrate that EEL has achieved
significantly better cognitive performance compared to the two
common random cognitive strategies. By comparing the results
obtained by GRC and BRC, we find that there is a negative
correlation between the performance of discovery ratio and
recall ratio, which is rational. By contrast, EEL can achieve
a good balance between exploring new possible patterns and
picking out known patterns.

Fig. 5. Performance curves obtained by EEL, GRC, and BRC for the color
stripe sequence cognition game with different NL.

Fig. 5 shows a group of performance curves obtained by
EEL, GRC, and BRC on the color stripe sequence cognition
game with different NL. In the figure, DR, RR, and PR stands
for discovery ratio, recall ratio, and precision, respectively.
By comparing the performance curves of the three cognitive
learning strategies, it is clearly that EEL achieves the more
significant improvement than the two random strategies GRC
and BRC in terms of the overall cognitive development. The
tendency of performance curves of EEL demonstrates that it
can progressively improve its own cognitive performance, and
converge to a stable value. These experimental results indicate
that the learning procedure of EEL is effective for color stripe
sequence cognition game.

For BRC and GRC, we also find that, the performance
indices discovery ratio and recall ratio are conflicting with
each other. BRC using the balanced random strategy obtains
a better discovery ratio but a worse recall ratio, compared
to GRC using greedy random strategy. This means that the
decision criterion used in the random cognitive strategies are
unable to well balance the requirement of exploring new pat-
terns and exploiting old patterns. More adaptive or flexible
decision policies must be considered like in human-like cogni-
tive behavior. Naturally, the flexible cognitive decision policies
composed of precondition, actions, and expectation reward
originated from standard RL might be useful. This consid-
eration also be retained in EEL. In addition, EEL can further
improve the flexibility of pattern representation and decision
policy learning by combining utility-selection theory and the
ESL strategy. In this sense, EEL can be seen as an extended
learning framework compared to traditional RL.

In addition, when the maximum length of a true color stripe
pattern is limited to 9, the total number of all possible pat-
tern NC_all = ∑9

i=2 7i = 47079200, which is a huge value
when completely storing them like in classical RL frame-
works. Our results indicate that EEL has achieved a significant
improvement on cognitive performance compared to the ran-
dom cognitive strategies by only using NP = 200 pattern
memory items.

2) Results on Coverage Selection Game: Like in the first
task, we introduce a random strategy algorithm (RSA) for
comparison in evaluating the cognitive performance of EEL. In
RSA, the probability of starting coverage selection is set to
0.1 according to our pilot studies. The above random strategy
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TABLE III
PERFORMANCE RESULTS OBTAINED BY EEL AND

RSA ON PROBLEM II WITH TL = 200000

will also be used in EEL if no decision policy matches the
current observations. Moreover, we set the maximum num-
ber of storing pattern items NP = 100, the maximum number
of storing coverage selection decision policies NR_cs = 30,
which have shown to be adequate according to our preliminary
studies.

To evaluate the cognitive learning performance, the follow-
ing two quantitative indices are considered in our simulations.
Coverage accuracy (CA) denotes the ratio of effective coverage
selection in all selections. Coverage efficiency (CE) denotes
the reward efficiency of coverage selection decision strategy.
CA and CE can be calculated as follows:

CA = Nce÷ Nc× 100%

CE = Rgtc ÷ Rigtc × 100%

where Nce denotes the effective coverage selection times,
Nc the total coverage selection times, Rgtc the gained total
coverage rewards, and Rigtc the ideal total coverage rewards.

Different from the color stripe sequence cognition game, the
above two performance indices are independent. Here, “effec-
tive coverage times” refers to the total number of effective
coverage selection in one simulation, in which the total num-
ber times of coverage selection are performed. “ideal total
coverage rewards” refers to the optimal total reward value for
one simulation. “gained total coverage rewards” is the sum of
the rewards of all effective coverage selections. The ideal val-
ues of these performance indices are all 100%. Table III lists
the typical experimental results obtained by EEL and RSA on
the coverage selection task with TL = 200000, and corre-
sponding number of periods Nperiods = 1271. In Table III, the
average values and standard deviation values of performance
indices are calculated using the results from 20 independent
simulations.

Similar to the color stripe sequence cognition game, EEL
also achieves considerable performance improvement com-
pared to optimal random strategies. EEL has not only
improved the coverage selection accuracy more than two
times, but also achieved higher overall reward. These results
indicate that EEL is effective not only in reducing the
failing coverage selections but also in improving effective
coverage selections with the help of evolutionary cognitive
development.

Performance curves for EEL and RSA for the coverage
selection task with different TL are plotted in Fig. 6. Overall,
EEL has obtained the best performance, and can converge to
stable results as simulation time increases. The performance
curves obtained by EEL gradually rises at the beginning and
then remains steady. For RSA, its performance curves keep
almost constant for different TL. These results indicate that

Fig. 6. Performance curves obtained by EEL and RSA on coverage selection
with different TL.

the designed cognitive task is statistically stable. The above
experimental results also demonstrate the effectiveness of EEL
in developing individual cognitive decision behaviors.

It should be noted that decision actions in the coverage
selection task have a huge space and needs to be dynami-
cally optimized, which is very different from classical RL. In
classical RL, all possible actions are considered to be finitely
countable, and the total number is not larger than 10 in most
studies [11], [13]. However, action variables of decision poli-
cies for coverage selection game designed in this paper are
continuous. This task is very meaningful extension to tradi-
tional RL as considered in [12] and [14]. Our experimental
results on the coverage selection game task show that EEL is
a feasible algorithm for solving such types of RL tasks.

D. Discussions

To demonstrate the effectiveness of the proposed EEL, two
novel cognitive decision tasks are designed. The color stripe
sequence cognition game is motivated by the cognitive com-
bination intelligence that humans usually use in, e.g., playing
“building blocks” game. The optimal coverage selection game
is abstracted from the prediction selection abilities found in
intelligent cognitive behaviors. No doubt, the above two types
of cognitive tasks are very valuable for studying human-like
cognitive learning. Meanwhile, they are inevitable for mea-
suring whether an intelligent machine possesses human-like
cognitive developmental learning capabilities.

To the best of our knowledge, existing RL methods are not
able to directly model the above two simulated cognition game
problems. Therefore, we can only introduce naïve random cog-
nitive algorithms for empirical comparisons. The experimental
results reported in this paper indicate that EEL is remarkably
effective.

It should be mentioned that the traditional RL would be
sufficient if all useful decision policies are finite and can be
fully recorded. However, in the real world, there are many
cases, where the conditional states and/or actions in decision
policies are infinite or huge. In this case, constrained learning
strategies have to be adopted due to the limited computational
resources [11], [12], [14]. In this paper, we investigate the
learning strategy of selectively memorizing a bounded num-
ber of pattern representation and decision policies, in which
utility probability values are introduced to guide selective
memory. Our theoretical and experimental results demonstrate
that the utility-selection learning strategy proposed in this
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paper is very effective and can be complementary to existing
RL strategies [11], [12], [14].

V. CONCLUSION

A novel machine learning method, EEL was proposed to
model collaborative cognitive development process. In the
proposed framework, two cognitive tasks, enactive pattern rep-
resentation, and decision-making, are jointly learned driven
by environmental action rewards. Specifically, three important
tools, namely, “SRM,” “utility-selection learning strategy,” and
“statistical decision output strategy” were introduced to realize
above targets.

Two cognitive decision tasks were designed to examine
the performance of proposed method. Those tasks cannot
be nicely solved by existing RL methods. Our experimental
results demonstrated that EEL was effective and could signif-
icantly enhance the cognitive performance with evolutionary
developmental learning.

From our results, two important observations can be made.
First, EEL presented in this paper expands the applicabil-
ity of traditional RL methods and provides a novel machine
learning framework as an implementation of enactive artificial
intelligence. Second, pattern representation learning guided by
utility-selection criterion related to decision reward from the
individual cognitive space may be a feasible way to design
autonomous intelligent systems.

Nevertheless, according to enactive artificial intelligence, an
autonomous intelligent system should have the ability of adap-
tively regulating its own sensorimotor interaction, which is still
missing from the proposed EEL framework. It will be our
future work to extend EEL by adding and evolving decision
policies for sensorimotor control. In addition, some extended
implementations of EEL may be feasible for practical cogni-
tive development problems. For example, multiple groups of
associated decision policies can be defined and jointly evolved.
Deep network structure can also be employed to model deci-
sion policy and complicated interpretive relationships over
ground patterns. These aspects will also be explored in our
future research.
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APPENDIX A: THEORETICAL ANALYSIS ON EEL 

This appendix provides some theoretical analysis on the 

availability of proposed EEL. To this end, we will first 

introduce a number of novel concepts to evaluate the 

learning performance for a cognitive development system. 

A. Representation completeness 

Definition 1: The representation model of decision policies 

in a cognitive system is fully complete, if all true causal 

relations in that system’s cognitive space can be completely 

covered by the representation model. A causal relation 

commonly comprises state inputs, actions and 

corresponding system responses. 

In standard reinforcement learning, we normally assume 

that representation models are fully complete, in which one 

or multiple fixed input patterns are pre-defined and all 

useful policies can be stored in the decision system. 

Obviously, it could be feasible only when input states and 

decision actions are all discrete. Even so, because many 

real applications may contain huge possible decision 

policies, completely storing them will become unrealistic 

given a finite memory capacity. In addition, it is very 

difficult to define cognitive rules with strict causality for 

many real-world problems. Therefore, we introduce a 

weaken form of full completeness, i.e., statistical 

completeness. 

Definition 2: The representation model of decision 

policies in a cognitive system is statistically complete, if all 

true causal relations in that system’s cognitive space can be 

statistically interpreted by the representation model with a 

limited memory capacity. 

Compared to full completeness, statistical completeness 

tries to represent all required causal rules using a small 

number of rules but not all possible rules. This implies that 

some original rules must be statistically reduced. The 

internal representation model of decision policies in EEL is 

supposed to be statistically complete.  

Next, we will discuss the evaluation of the learning 

performance of a whole cognitive system. 

B. Evolvable completeness 

We further introduce the concept “evolvable completeness” 

to measure the evolvable intelligence of a cognitive system. 

A few related definitions are first given below. 

Definition 3: A cognitive development system is said to 

be of evolvable completeness, if the system can be 

asymptotically developed by itself towards the optimal 

consistency to all causal relations of that system’s cognitive 

space. Here, we assume that a cognitive agent surviving in 

an environment can perceive all meaningful states, perform 

some behavioral actions, and receive action rewards from 

individual cognitive space. 

In definition 3, the term “evolvable” means that the 

cognitive performance of an agent can be improved by 

enactive interaction to the environment. The “optimal 

consistency” indicates that all stored policies with limited 

capacity can optimally interpret all causal relations of 

individual cognitive space.  

According to definition 3, we may believe that human 

cognitive development system satisfies evolvable 

completeness. Also, evolvable completeness may be a 

necessary condition for realizing human-like cognitive 

development system for intelligent machines. By 

combining the definitions 1 and 2, we can find that if a 

cognitive system satisfies evolvable completeness, then its 

representation model of decision policies should also be 

fully or statistically complete. Thus, for a human-like 

cognitive agent, another learning ability should be 

equipped, and the following definition is introduced. 

Definition 4: A cognitive development system is said to 

be of ergodic completeness, if the system has the ability of 

exploring all possible causal relations existed in that 

system’s cognitive space. 

Definitions 3 and 4 indicate that if a cognitive system is 

of evolvable completeness, then it should also satisfy 

ergodic completeness. In addition, ergodic completeness is 

a basic requirement for almost all search-based 

optimization algorithms including evolutionary 

computation and other meta-heuristics algorithms. 

However, this concept has not yet been attached enough 

importance in machine learning. Based on above 

discussions, we believe that ergodic completeness should 

be a base point to constitute a human-like cognitive 

development system. Here, suitable behavior decision 

strategy may also be very important to find all possible 

causal exemplars, and it should have the ability of 

exploring and exploiting all meaningful causal pairs as 

quickly as possible. According to the probabilistic 

principles, if a behavior decision strategy has non-zero 

probability values on all meaningful actions, it could visit 

all possible causal pairs. In traditional reinforcement 

learning, the strategies with balanced exploration and 

exploitation on decision output are used to achieve ergodic 

completeness. A similar strategy is also used in EEL. 

From definitions 3 and 4, we find that ergodic 

completeness should be necessary but not sufficient to get 

evolvable completeness when memory capacity is limited 

for a cognitive development system. Undoubtedly, selective 

memory has to be considered. 

Definition 5: A cognitive developmental system is said 

to be of reduction completeness, if the system can 

dynamically reduce all perceived causal examples into 

limited number of causal exemplars that are statistically 

consistent with the original examples on decision inference 

in a cognitive space. 

In definition 5, the concept “decision inference” refers to 

effectively predicting concomitant results for given inputs 

and actions. From definitions 3 to 5, we can conclude that 

evolving completeness may be the combination of ergodic 

completeness and reduction completeness. Furthermore, 

reduction completeness should be a core condition for 

gradually developing cognitive intelligence guided by 

environmental action rewards. 

C. Core characteristics of EEL 

In EEL, we consider that the representation forms of 

decision policies are pre-constructed by hand, consequently 
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the statistical completeness is supposed to be directly 

satisfied. 

Moreover, because the action output is selected based on 

one extra weighted factor attached to every feasible 

decision policy in terms of their own utility values, EEL 

has the ability of simultaneously exploring and exploiting 

new possible causal examples. That is, EEL satisfies 

ergodic completeness according to definition 4. Here, 

proposed adaptive weighted factor evaluation strategy can 

enable EEL to own more flexible adaptivity. In comparison, 

traditional reinforcement learning methods can only adopt 

constant probability value to balance the requirements 

between exploration and exploitation. 

On the basis of the above analysis, we further examine 

reduction completeness of EEL. At first, reduction 

completeness could be viewed as a core characteristic 

originated from online statistical learning, a kind of 

extension of classical statistical learning. Wherein, trained 

samples can only be dynamically or incrementally gathered, 

while the memory capacity may be limited and insufficient 

to store all perceived samples. According to our previous 

study, as a very unique dynamic sampling process, 

evolutionary sampling learning is particularly well suited 

for online statistical learning problems. According to 

slightly strict analysis, the following property for 

evolutionary enactive learning can be obtained. 

Proposition 1: In evolutionary enactive learning, given a 

proper distance metric on decision policies, the learning 

algorithm satisfies reduction completeness if the perceived 

examples of decision policies are uniformly generated 

according to the probability values linearly related to their 

true utility values. 

For Proposition 1, if a distance metric on the decision 

policies can be properly pre-defined, we can then construct 

a Hilbert space including all feasible decision policies. Also, 

correlation factor metric between any two decision policies 

are valid. In addition, if we assume the correlation degree 

between two decision policies obeys with Gaussian 

distribution function on the distance, we may define a 

probability space on decision policies using their utility 

values. Moreover, we use ( )lR   to denote the true 

probability of different decision policies in a cognitive 

space, and ( )t

lR  to denote the estimation at time t  

based on past experience. Accordingly, ( )t

lp R  can be 

seen as the current approximation representation of ( )t

lR . 

By integrating the above considerations, we know that the 

decision policy learning algorithm of EEL tries to perform 

the evolution with the objective ( ) ( )t t

l lp R R , which is 

consistent with the standard evolutionary sampling 

approach. Moreover, the definition of ( )t

lR  is tightly 

related to the environmental rewards produced by the laws 

in a cognitive space, and it will tend to ( )lR   with the 

cognitive development. Thus, in terms of the learning 

characteristic owned by the evolutionary sampling 

approach, the decision policy learning algorithm used in 

EEL can achieve the goal ( ) ( )t

l lp R R  . By 

summarizing above analysis, Property 1 can be concluded. 

Next, we can further deduce the following property for 

evolutionary enactive learning. 

Proposition 2: If the representation model of decision 

policies pre-defined by hand is statistically complete and it 

contains a proper distance metric on decision policy space, 

then evolutionary enactive learning is evolvable 

completeness. 

For the decision policy learning algorithm designed in 

EEL, we have 

     1 1 1 1

2 2( ) ( ) ( | ) ( ) ( )t t t t t t

l l l ob ob lu R u R R R            

and 

      1 2 1( | ) exp( ( , ) / ) ( )t t t t t

l ob ob l w lR dist u R


  

    .  

where, 1( )t

ob   represents the prior probability that the 

input 1t

ob

  may occur in the cognitive space, and 

1 1

2 2
ˆ( ) (   )t t

l lR r in R   . So, if 1

2 2( ) ( )t

l lR R   , then 

there have ( ) ( )t

l lR R   ,  ( ) ( )t

l lu R u R , and 
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Moreover, we have 

     2 2( ) ( ) ( ) ( ) ( )l l l l lu R u R u R m R R


         , 

that is, 

1

1
2

2

( ) ( )
( )

1

l l

l

R m R
u R






 


 
  

 

. 

So, there is  

1
1 2 1 2

2

( ) ( )
( | ) exp( ( , ) / )

1

t t t t l l

l ob ob l w

R m R
R dist






 


 
 



 
     

 

  Similar to reinforcement learning, 1

2 2( ) ( )t

l lR R    

could be satisfied with the reinforcement development of a 

cognitive system. So, if 0.5   is considered as default, 

the Proposition 2 will be satisfied. 
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